Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi kt lại câu 5 và 7 giúp mình nha
câu 5 chọn 1 trong 4
chọn 17
22
11
19
câu 7 chọn 1 trong 4
-4x5y5
\(\frac{-48}{5}\)x5y5
-4x4y6
\(\frac{-48}{5}\)x4y6
1)
Ta có: \(\left(x+3\right)^2\ge0;\left|y+1\right|\ge0\) với mọi số thực x; y
=> \(\left(x+3\right)^2+\left|y+1\right|+5\ge0+0+5=5\)
Dấu "=" xảy ra <=> x + 3 = 0 và y + 1 = 0 <=> x = -3 và y = -1
=> \(\left(x+3\right)^2+\left|y+1\right|+5\) đạt giá trị bé nhất bằng 5 tại x = -3 và y = -1
=> \(\frac{2020}{\left(x+3\right)^2+\left|y+1\right|+5}\)đạt giá trị lớn nhất bằng \(\frac{2020}{5}=404\) tại x = -3 và y = -1
2) \(M=2x^4+3x^2y^2+y^4+y^2\)
\(=\left(2x^4+2x^2y^2\right)+\left(x^2y^2+y^4\right)+y^2\)
\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)
\(=2x^2+y^2+y^2=2x^2+2y^2=2\left(x^2+y^2\right)=2\)
Thay x = \(\frac{1}{2}\), y = \(\frac{-1}{3}\)vào biểu thức A
Ta được: \(A=3.\left(\frac{1}{2}\right)^3.\left(\frac{-1}{3}\right)+6.\left(\frac{1}{2}\right)^2.\left(-\frac{1}{3}\right)^2+3.\frac{1}{2}.\left(\frac{-1}{3}\right)^2\)
\(=\frac{3.1.\left(-1\right)}{8.3}+\frac{6.1.1}{4.9}+\frac{3.1.1}{2.9}\)
\(=\frac{-1}{8}+\frac{1}{6}+\frac{1}{6}=\frac{5}{24}\)
Thay x = -1, y = 3 vào biểu thức B
Ta được:
B = (-1)2. 32 + (-1) . 3 +(-1)3 +33
= 9 + (-3) + (-1) + 27
= 32
\(A=3x^2y+6x^2y^2+3xy^2\)
\(A=3\left(\frac{1}{2}\right)^3\left(-\frac{1}{3}\right)+6\left(\frac{1}{2}\right)^2\left(-\frac{1}{3}\right)^2+3\left(\frac{1}{2}\right)\left(-\frac{1}{3}\right)^2\)
\(A=\left(-\frac{1}{8}\right)+\frac{1}{6}+\frac{1}{6}\)
\(A=\frac{5}{24}\)
Vậy: Biểu thức A tại x = 1/2; y = -1/3 là: 5/24
\(B=x^2y^2+xy+x^3+y^3\)
\(B=\left(-1\right)^2.3^2+\left(-1\right).3+\left(-1\right)^3+3^3\)
\(B=9+\left(-3\right)+26\)
\(B=32\)
Vậy: biểu thức B tại x = -1; y = 3 là: 32
Thay x = 1 và y = \(\frac{1}{2}\) vào biểu thức ta được:
x2y3 + xy = 13. (\(\frac{1}{2}\) )3 + 1. (\(\frac{1}{2}\)) = 1. \(\frac{1}{8}\) + \(\frac{1}{2}\) = \(\frac{1}{8}\)+ \(\frac{1}{2}\) =\(\frac{1+4}{8}\) = \(\frac{5}{8}\)
Vậy giá trị của biểu thức x2y3 + xy tại x = 1 và y = \(\frac{1}{2}\) là \(\frac{5}{8}\)
1.
\(-3x^5y^4+3x^2y^3-7x^2y^3+5x^5y^4\)
\(=(-3x^5y^4+5x^5y^4)+(3x^2y^3-7x^2y^3)\)
\(=2x^5y^4-4x^2y^3\)
2.
\(\frac{1}{2}x^4y-\frac{3}{2}x^3y^4+\frac{5}{3}x^4y-x^3y^4\)
\(=(\frac{1}{2}x^4y+\frac{5}{3}x^4y)-(\frac{3}{2}x^3y^4+x^3y^4)\)
\(=\frac{13}{6}x^4y-\frac{5}{2}x^3y^4\)
3.
\(5x-7xy^2+3x-\frac{1}{2}xy^2\)
\(=(5x+3x)-(7xy^2+\frac{1}{2}xy^2)\)
\(=8x-\frac{15}{2}xy^2\)
4.
\(\frac{-1}{5}x^4y^3+\frac{3}{4}x^2y-\frac{1}{2}x^2y+x^4y^3\)
\(=(\frac{-1}{5}x^4y^3+x^4y^3)+(\frac{3}{4}x^2y-\frac{1}{2}x^2y)\)
\(=\frac{4}{5}x^4y^3+\frac{1}{4}x^2y\)
5.
\(\frac{7}{4}x^5y^7-\frac{3}{2}x^2y^6+\frac{1}{5}x^5y^7+\frac{2}{3}x^2y^6\)
\(=(\frac{7}{4}x^5y^7+\frac{1}{5}x^5y^7)+(-\frac{3}{2}x^2y^6+\frac{2}{3}x^2y^6)\)
\(=\frac{39}{20}x^5y^7-\frac{5}{6}x^2y^6\)
6.
\(\frac{1}{3}x^2y^5(-\frac{3}{5}x^3y)+x^5y^6=(\frac{1}{3}.\frac{-3}{5})(x^2.x^3)(y^5.y)+x^5y^6\)
\(=\frac{-1}{5}x^5y^6+x^5y^6=\frac{4}{5}x^5y^6\)
Đặt A = \(\frac{1}{2}\)x5y - \(\frac{3}{4}\)x5y + x5y
Ta có: A = (\(\frac{1}{2}\) - \(\frac{3}{4}\) + 1) x5y
A = \(\frac{3}{4}\) x5y .
Thay x = 1; y = -1 vào A ta được đơn thức: A = \(\frac{3}{4}\) x5y = \(\frac{3}{4}\) 15(-1) = - \(\frac{3}{4}\).
Vậy A = - \(\frac{3}{4}\) tại x = 1 và y = -1.