K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2021

a) Ta có: sin30=cos60, sin50=cos40

    Mà cos30 < cos38 < cos40 < cos60 < cos80

    Nên cos30 < cos38 < sin50 < sin30 < cos80

b) Ta có: tan75=cot15, tan63=cot27 => cot11 < tan75 < cot20 < tan63 (1)

         và: sin49=cos41 => cos30 < sin49 (2)

    Lại có: cot11=tan69 > tan49= sin49:cos49 > sin49 (do cos49<1) (3)

    Từ (1), (2) và (3) suy ra: cos30 < sin49 < cot11 < tan75 < cot20 < tan63

   

    

25 tháng 8 2021

TA CÓ   \(\sin30\)\(\cos60\)

             \(\sin50=\cos40\)

---->>  \(\cos30< \cos38< \cos40< \cos60< \cos80\)

------>> \(\cos30< \cos38< \sin50< \sin60< \cos80\)

Cái kia làm tương tự nhoa

Bạn xin 1 cái k

9 tháng 8 2021

Mik có lớp 4 thôi seo giúp đc . Seo bn zô zuyên hế . ^~^

9 tháng 8 2021

xin lỗi nhé

NM
7 tháng 8 2021

điều kiện: \(x\ge\frac{1}{2}\)

ta có \(x^2+8x-4-4x\sqrt{2x-1}=2x-1\)

\(\Leftrightarrow\left(x-2\sqrt{2x-1}\right)^2=2x-1\Leftrightarrow\orbr{\begin{cases}x-2\sqrt{2x-1}=\sqrt{2x-1}\\x-2\sqrt{2x-1}=-\sqrt{2x-1}\end{cases}}\)

\(\) hay \(\orbr{\begin{cases}x=3\sqrt{2x-1}\\x=\sqrt{2x-1}\end{cases}}\)

TH1: \(x=3\sqrt{2x-1}\Leftrightarrow x^2=18x-9\Leftrightarrow x=9\pm6\sqrt{2}\)

TH2: \(x=\sqrt{2x-1}\Leftrightarrow x^2=2x-1\Leftrightarrow x=1\)

( về cơ bản nó không khác cách e đặt ẩn phụ là mấy, chỉ có điều e liên hợp kiểu gì nhỉ)

10 tháng 8 2021

=1 nha

6 tháng 8 2021

xy = \(\sqrt{x+r72y6}\)

6 tháng 9 2021

Chắc để là tìm max

\(A=\sqrt{xy+3yz+2z^2}+\sqrt{yz+3xz+2x^2}+\sqrt{xz+3xy+2y^2}\)

Với x,y > 0 ta luôn có \(\sqrt{ab}\le\frac{a+b}{2}\)

Dấu "=" xảy ra khi a = b 

Áp dụng ta được: 

\(2\sqrt{\frac{3}{2}}\sqrt{xy+3yz+2z^2}\le\frac{3}{2}+xy+3yz+2z^2\)

Tương tự: \(2\sqrt{\frac{3}{2}}\sqrt{yz+3xz+2x^2}\le\frac{3}{2}+yz+3xz+2x^2\)

\(2\sqrt{\frac{3}{2}}\sqrt{xz+3xy+2y^2}\le\frac{3}{2}+xz+3xy+2y^2\)

Cộng theo vế ta được : 

\(2\sqrt{\frac{3}{2}}A\le\frac{9}{2}+4xy+4yz+4xz+2x^2+2y^2+2z^2\)

Ngoài ra với mọi số thực x,y,z  ta có : 

           \(x^2+y^2+z^2\ge xy+yz+xz\)

Dấu "=" xảy ra khi x = y = z 

\(\Rightarrow2\sqrt{\frac{3}{2}}A\le\frac{9}{2}+6\left(x^2+y^2+z^2\right)\le\frac{9}{2}+6\times\frac{3}{4}=9\)

\(\Rightarrow A\le\frac{3\sqrt{6}}{2}\).

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)

4 tháng 8 2021
R đoá cậu :)))))

Bài tập Tất cả

Bài tập Tất cả

10 tháng 8 2021
Tự lm đi ôi vãi ng ta ko bt mới đăng lên chứ nhỉ
2 tháng 8 2021
????????????????????????????????????????????????????????
2 tháng 8 2021

cờ vua

DD
17 tháng 7 2021

\(x=\sqrt[3]{2}+\sqrt[3]{3}\)

\(\Leftrightarrow x^3=2+3+3\sqrt[3]{2.3}\left(\sqrt[3]{2}+\sqrt[3]{3}\right)\)

\(\Leftrightarrow x^3-5=3\sqrt[3]{6}x\)

\(\Leftrightarrow x^9-15x^6+75x^3-125=162x^3\)

\(\Leftrightarrow x^9-15x^6-87x^3-125=0\)(1)

Nếu phương trình (1) có nghiệm hữu tỉ thì nghiệm đó có dạng \(\frac{p}{q}\)với \(p\)là ước của \(125\)\(q\)là ước của \(1\)

Do đó nếu (1) có nghiệm thì nghiệm đó chỉ có thể là thuộc tập hợp: \(\left\{-125,-25,-5,-1,1,5,25,125\right\}\).

Thử lần lượt các giá trị trên ta đều thấy không thỏa mãn. 

Do đó phương trình (1) không có nghiệm hữu tỉ. 

Mà \(x=\sqrt[3]{2}+\sqrt[3]{3}\)là một nghiệm của phương trình (1). 

Do đó \(x=\sqrt[3]{2}+\sqrt[3]{3}\)là số vô tỉ. 

VÌ : \(\sqrt{2}\)+\(\sqrt{3}\)là số vô tỉ

=> ....

Mới lớp 8 nên ko bt gì hết ;-;

12 tháng 7 2021
Cái này bạn áp dụng công thức của biện luận hệ phương trình là được mờ, thật ra lâu mình chưa sờ tới cũng hơi quên ;)) Vô nghiệm với m = -2 Vô số nghiệm với m = 2
12 tháng 7 2021

Mình mới thử chương trình lớp 9 nên chưa hiểu nhiều lắm. Cảm ơn nhé!

9 tháng 7 2021

Ta có: \(\hept{\begin{cases}x^2+y^2+xy+2y+x=2\left(1\right)\\2x^2-y^2-2y-2=0\left(2\right)\end{cases}}\)

<=> \(3x^2+xy+x-4=0\)

<=> \(x\left(y+1\right)=4-3x^2\) 

<=> \(y+1=\frac{4-3x^2}{x}\)

Khi đó,  pt (2) <=> \(2x^2-1-\left(y+1\right)^2=0\)

<=> \(2x^2-1-\left(\frac{4-3x^2}{x}\right)^2=0\)

<=> \(2x^2-1-\frac{9x^4-24x^2+16}{x^2}=0\)

<=> \(2x^4-x^2-9x^4+24x^2-16=0\)

<=> \(7x^4-23x^2+16=0\)

<=>> \(7x^4-7x^2-16x^2+16=0\)

<=> \(\left(x^2-1\right)\left(7x^2-16\right)=0\)

<=> \(\orbr{\begin{cases}x=\pm1\\x=\pm\frac{4}{\sqrt{7}}\end{cases}}\)

Với x = 1 => \(y=\frac{4-3.1^2}{1}-1=0\)

(còn lại tt)

DD
9 tháng 7 2021

\(\hept{\begin{cases}x^2+y^2+xy+2y+x=2\left(1\right)\\2x^2-y^2-2y-2=0\left(2\right)\end{cases}}\)

Lấy \(3\left(2\right)-\left(1\right)\)ta được: 

\(3\left(2x^2-y^2-2y-2\right)-\left(x^2+y^2+xy+2y+x\right)=-2\)

\(\Leftrightarrow5x^2-4y^2-8y-4-xy-x=0\)

\(\Leftrightarrow\left(x-y-1\right)\left(5x+4y+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y+1\\x=-\frac{4y+4}{5}\end{cases}}\)

Từ đây bạn thế vào (1) hoặc (2) và giải phương trình bậc hai thu được các nghiệm của hệ phương trình. 

Đáp án các nghiệm là: \(\left(-1,-2\right),\left(1,0\right),\left(-\frac{4}{\sqrt{7}},\frac{5}{\sqrt{7}}-1\right),\left(\frac{4}{\sqrt{7}},-\frac{5}{\sqrt{7}}-1\right)\).

8 tháng 7 2021

ĐKXĐ : \(y+\frac{1}{y}\ge0;y\ne0\)

Ta có : \(\hept{\begin{cases}x+\frac{1}{x^2+1}=y+\frac{1}{y^2+1}\left(1\right)\\x^2+2x.\sqrt{y+\frac{1}{y}}=8x-1\left(2\right)\end{cases}}\)              

(1) \(\Leftrightarrow\left(x-y\right)-\frac{x^2-y^2}{\left(x^2+1\right)\left(y^2+1\right)}=0\) \(\Leftrightarrow\left(x-y\right)\left(1-\frac{x+y}{\left(x^2+1\right)\left(y^2+1\right)}\right)=0\) 
\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\1-\frac{x+y}{\left(x^2+1\right)\left(y^2+1\right)}=0\end{cases}}\) 

Với x = y thay vào (2) ; ta có : \(x^2+2x\sqrt{x+\frac{1}{x}}=8x-1\) 

\(\Leftrightarrow x+2\sqrt{x+\frac{1}{x}}=8-\frac{1}{x}\) ( vì x =  y mà y khác 0 => x khác 0 ) 

Đặt \(a=\sqrt{x+\frac{1}{x}}\) rồi giải p/t

Với : \(1-\frac{x+y}{\left(x^2+1\right)\left(y^2+1\right)}=0\) \(\Leftrightarrow\frac{x^2y^2+y^2+x^2+1-x-y}{\left(x^2+1\right)\left(y^2+1\right)}=0\)

\(\Leftrightarrow\frac{\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{1}{2}+x^2y^2}{\left(x^2+1\right)\left(y^2+1\right)}=0\)

Dễ thấy : VT > 0 => PTVN 

....