Một cano đi xuôi dòng nước từ địa điểm A đến B hết thời gian t1. Nếu cano đi ngược dòng nước từ B về A hết t2=10 giờ. Nếu cano tắt máy trôi theo dòng nước thì thời gian đi từ A đến B là t3=20 giờ. Tính t1?
A.10 giờ
B.2 giờ
C.5 giờ
D.40 giờ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}xy\left(4xy+y+4\right)=y^2\left(2y+5\right)-1\\2xy\left(x-2y\right)+x-14y=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2xy+1\right)^2+y^2\left(x-2y\right)=5y^2\left(1\right)\\\left(x-2y\right)\left(2xy+1\right)=12y\left(2\right)\end{cases}}\)
Xét: y = 0 không là nghiệm của hệ phương trình
Xét: \(y\ne0\) chia hai vế phương trình (1) cho \(y^2\); chia hai vế phương trình (2) cho y được
\(\hept{\begin{cases}\left(2x+\frac{1}{y}\right)^2+\left(x-2y\right)=5\\\left(x-2y\right)\left(2x+\frac{1}{y}\right)=12\end{cases}}\)
Đặt \(\hept{\begin{cases}a=2x+\frac{1}{y}\\b=x-2y\end{cases}}\) có hệ phương trình \(\Leftrightarrow\hept{\begin{cases}a^2+b=5\\ab=12\end{cases}\Rightarrow\hept{\begin{cases}a=-3\\b=-4\end{cases}}}\) hay \(\hept{\begin{cases}2x+\frac{1}{y}=-3\\x-2y=-4\end{cases}}\)
Giải hệ phương trình (tự làm nốt) được nghiệm \(\left(-2;1\right)\) và \(\left(-\frac{7}{2};\frac{1}{4}\right)\)
Điều kiện: \(\hept{\begin{cases}xy\ge0\\x,y\ge-1\end{cases}}\) khi đó hệ phương trình tương đương với
\(\Leftrightarrow\hept{\begin{cases}x+y=3+\sqrt{xy}\\x+y+2\sqrt{xy+x+y+1}=14\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=3+\sqrt{xy}\\3+\sqrt{xy}+2\sqrt{xy+4+\sqrt{xy}}=14\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=3+\sqrt{xy}\\4\left(xy+4+\sqrt{xy}\right)=\left(11-\sqrt{xy}\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=3+\sqrt{xy}\\3xy+26\sqrt{xy}-105=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=3+\sqrt{xy}\\\sqrt{xy}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=6\\\sqrt{xy}=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy hệ phương trình có nghiệm duy nhất \(\left(x,y\right)=\left(3,3\right)\)
gọi độ dài từ A đến B là s ( km ) , vận tốc thực của cano là v , vtoc của dòng nước là v1
- Nếu cano đi xuôi : t1 = s/ (v + v1) (3)
- Nếu cano đi ngược : t2 = s/ ( v-v1) =10 (1)
- Nếu cano đi theo dòng nước : t3 = s/v1=20 (2)
(1), (2) có v=3v1 . Thay vào (3) có t1 = s/ 4v1 = 20 *1/4 =5h
Chọn C