K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2022

\(\hept{\begin{cases}xy\left(4xy+y+4\right)=y^2\left(2y+5\right)-1\\2xy\left(x-2y\right)+x-14y=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2xy+1\right)^2+y^2\left(x-2y\right)=5y^2\left(1\right)\\\left(x-2y\right)\left(2xy+1\right)=12y\left(2\right)\end{cases}}\)

Xét: y = 0 không là nghiệm của hệ phương trình

Xét: \(y\ne0\) chia hai vế phương trình (1) cho \(y^2\); chia hai vế phương trình (2) cho y được

\(\hept{\begin{cases}\left(2x+\frac{1}{y}\right)^2+\left(x-2y\right)=5\\\left(x-2y\right)\left(2x+\frac{1}{y}\right)=12\end{cases}}\)

Đặt \(\hept{\begin{cases}a=2x+\frac{1}{y}\\b=x-2y\end{cases}}\) có hệ phương trình \(\Leftrightarrow\hept{\begin{cases}a^2+b=5\\ab=12\end{cases}\Rightarrow\hept{\begin{cases}a=-3\\b=-4\end{cases}}}\) hay \(\hept{\begin{cases}2x+\frac{1}{y}=-3\\x-2y=-4\end{cases}}\)

Giải hệ phương trình (tự làm nốt) được nghiệm \(\left(-2;1\right)\) và \(\left(-\frac{7}{2};\frac{1}{4}\right)\)

2 tháng 1 2022

Điều kiện: \(\hept{\begin{cases}xy\ge0\\x,y\ge-1\end{cases}}\) khi đó hệ phương trình tương đương với

\(\Leftrightarrow\hept{\begin{cases}x+y=3+\sqrt{xy}\\x+y+2\sqrt{xy+x+y+1}=14\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=3+\sqrt{xy}\\3+\sqrt{xy}+2\sqrt{xy+4+\sqrt{xy}}=14\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=3+\sqrt{xy}\\4\left(xy+4+\sqrt{xy}\right)=\left(11-\sqrt{xy}\right)^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=3+\sqrt{xy}\\3xy+26\sqrt{xy}-105=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=3+\sqrt{xy}\\\sqrt{xy}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=6\\\sqrt{xy}=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\y=3\end{cases}}\)

Vậy hệ phương trình có nghiệm duy nhất \(\left(x,y\right)=\left(3,3\right)\)

1 tháng 1 2021
Bạn tham khảo lời giải của mình!

Bài tập Tất cả