K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
26 tháng 11 2020

BĐT cần chứng minh tương đương với: 

\(\frac{a}{b}-\frac{a}{b+c}+\frac{b}{c}-\frac{b}{c+a}+\frac{c}{a}-\frac{c}{a+b}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{ac}{b\left(b+c\right)}+\frac{ba}{c\left(c+a\right)}+\frac{cb}{a\left(a+b\right)}\ge\frac{3}{2}\)

Ta có: 

\(\frac{ac}{b\left(b+c\right)}+\frac{ba}{c\left(c+a\right)}+\frac{cb}{a\left(a+b\right)}\)

\(=\frac{a^2c^2}{abc\left(b+c\right)}+\frac{b^2a^2}{abc\left(c+a\right)}+\frac{c^2b^2}{abc\left(a+b\right)}\)

\(\ge\frac{\left(ab+bc+ca\right)^2}{abc\left(a+b\right)+abc\left(b+c\right)+abc\left(c+a\right)}\)

\(=\frac{\left(ab+bc+ca\right)^2}{2abc\left(a+b+c\right)}\)

Bất đẳng thức cần chứng minh sẽ đúng nếu ta chứng minh được \(\frac{\left(ab+bc+ca\right)^2}{abc\left(a+b+c\right)}\ge3\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\)

Đặt \(ab=x,bc=y,ca=z\)suy ra ta cần chứng minh 

\(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2zx\ge3xy+3yz+3zx\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)(đúng) 

Vậy bất đẳng thức ban đầu là đúng. 

Dấu \(=\)xảy ra khi \(a=b=c\).

24 tháng 11 2020

a, ĐK : \(x\ne-1;-2\)

 \(\frac{2}{x+1}-\frac{3}{x+2}=\frac{1}{2}\Leftrightarrow\frac{2\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}-\frac{3\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}=\frac{\left(x+2\right)\left(x+1\right)}{\left(x+2\right)\left(x+1\right)}\)

Khử mẫu : \(2x+4-3x-3=x^2+x+2x+2\)

\(\Leftrightarrow-x+1=x^2+3x+2\Leftrightarrow-x^2-4x-1=0\)

giải delta nốt nhé ! 

b;c tương tự 

23 tháng 11 2020

\(\text{áp dụng định lý viet ta có: }\)

\(x_1+x_2=2k;x_1x_2=2k^2+\frac{4}{k^2}-5\)

\(\Rightarrow E=4k^2\left(2k^2+\frac{4}{k^2}-5\right)=8k^4-20k^2+16\)

ta tìm min và max cuả

\(2k^4-5k^2+4\)

hay min và max của \(2k^4-5k^2\text{ thấy ngay: }max_{2k^4-5k^2}=\text{ vô hạn}\)

\(8\left(2k^4-5k^2\right)=16k^4-40k^2=\left(4k^2-5\right)^2-25\ge-25\)

dấu bằng bạn tự tìm

13 tháng 11 2020

với n=1 

=> n3+3n2-4n+1=1 không chia hết cho 6

=> mệnh đề sai

7 tháng 11 2020

\(5\overrightarrow{IA}-7\overrightarrow{IB}-\overrightarrow{IC}=0\Leftrightarrow5\left(\overrightarrow{GA}-\overrightarrow{GI}\right)-7\left(\overrightarrow{GB}-\overrightarrow{GI}\right)-\left(\overrightarrow{GC}-\overrightarrow{GI}\right)=0\)

\(\Leftrightarrow3\overrightarrow{GI}=-5\overrightarrow{GA}+7\overrightarrow{GB}+\overrightarrow{GC}=-6\overrightarrow{GA}+6\overrightarrow{GB}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\right)\)

\(\Leftrightarrow\overrightarrow{GI}=2\left(\overrightarrow{GB}-\overrightarrow{GA}\right)=2\overrightarrow{AB}\)\(\Leftrightarrow GI//AB\Rightarrow\frac{OA}{OI}=\frac{AB}{GI}=\frac{1}{2}\)