trong oxy cho tam giac ABC co A 1 1 , B 3 2 , C 1 3 va duong thang d 2x y 3 0. Viet phuong trinh duong thang delta di qua trong tam G cua tam giac ABC va song song voi duong thang d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A B(5;1) C D E F(4;3) G d:x+2y-18=0
Gọi AF giao BC tại G. Theo ĐL Thales thì \(\frac{FA}{FG}=\frac{ED}{EB}=1\), suy ra F là trung điểm AG
Dễ thấy tam giác ABG cân tại B,do đó AG vuông góc BF
Đường thẳng AG: đi qua \(F\left(4;3\right)\), VTPT \(\overrightarrow{FB}=\left(1;-2\right)\)\(\Rightarrow AG:x-2y+2=0\)
Xét hệ \(\hept{\begin{cases}x+2y-18=0\\x-2y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=8\\y=5\end{cases}}\Rightarrow A\left(8;5\right)}\)
Vì F là trung điểm AG nên \(G\left(0;1\right)\)\(\Rightarrow\overrightarrow{GB}=\left(5;0\right)\)=> VTPT của BC là \(\left(0;1\right)\)
\(\Rightarrow BC:x-1=0\). Vậy \(d\left(O;BC\right)=1.\)

Bài 1: Hàm số cho xác định trên R khi và chỉ khi:
\(\Delta'\le0\Leftrightarrow m^2-22m+120\le0\Leftrightarrow10\le m\le12\)
Vậy tổng các giá trị nguyên của m là \(33\)
Bài 2: Xét \(m=4\), bất phương trình vô nghiệm
Để bất phương trình cho vô nghiệm thì:
\(\hept{\begin{cases}m-4< 0\\\Delta'< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< 4\\m-4< 0\end{cases}}\Leftrightarrow m< 4\)
Vậy \(m\le4\), số giá trị nguyên dương của m thỏa mãn đề là 4 giá trị.
Bài 3:
TH1: \(x< -1\)thì: \(-2x-2+3-x>3\Leftrightarrow x< -\frac{2}{3}\)suy ra \(x< -1\)
TH2: \(-1\le x\le3\)thì: \(2x+2+3-x>3\Leftrightarrow x>-2\)suy ra \(-1\le x\le3\)
TH3: \(x>3\)thì: \(2x+2+x-3>3\Leftrightarrow x>\frac{4}{3}\)suy ra \(x>3\)
Vậy \(S=R.\)


ta có bài toán đúng với n=1
giả sử đúng với n=k
xét n=k+1:
\(29^{2\left(k+1\right)}-140\left(k+1\right)-1\)
\(=841.29^{2k}-140k-141=700.29^{2k}+141.\left(29^{2k}-140k-1\right)+19600k\)
mà \(\hept{\begin{cases}700.29^{2k}⋮700\\140\left(29^{2k}-140k-1\right)⋮700\\19600⋮700\end{cases}}\)bài toán đúng với n=k+1
Vậy theo nguyên lý quy nạp ta chứng minh được bài toán

\(B=2M-C=\left(2,0\right)\)
ta có tọa độ trung điểm H của AB là
\(H=\frac{3G-C}{2}=\left(-1,4\right)\)
Do đó \(\overrightarrow{BH}=\left(-3,4\right)\)đường cao kẻ từ C đi qua C và có VTPT là BH nên \(d:3x-4y+10=0\)

Ta cần chứng minh: \(3\left(a^2+b^2\right)+c^2\ge2\left(ab+bc+ca\right)\)
Nó đúng bởi \(3\left(a^2+b^2\right)+c^2-2\left(ab+bc+ca\right)=\left(a-b\right)^2+2\left(a-\frac{c}{2}\right)^2+2\left(b-\frac{c}{2}\right)^2\ge0\)
Đẳng thức xảy ra khi \(a=b=\frac{1}{\sqrt{5}};c=\frac{2}{\sqrt{5}}\)
Done!

Điều kiện: \(x^2-mx+4\ne0,\forall x\inℝ\)
Vì \(x^2+x+4>0,\forall x\inℝ\)
nên \(\left|\frac{x^2+x+4}{x^2-mx+4}\right|\le2,\forall x\inℝ\)
\(\Leftrightarrow x^2+x+4\le2\left(x^2-mx+4\right)\)
\(\Leftrightarrow x^2-\left(2m+1\right)x+4\ge0\)
\(\Leftrightarrow\frac{-5}{2}\le m\le\frac{-3}{2}\)