K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Giả sử p và q là các số nguyên sao cho: \(\frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....-\frac{1}{1334}+\frac{1}{1335}\)CMR: \(P⋮2003\)2. CM:\(\forall n\in N,n\ge2\)thì\(An=2^{2^n}+4⋮10\)3.CM: \(\forall n\in N,n\ge1\)thì \(Bn=4^n+15n-1⋮9\)4.CM: \(\forall n\in Z,n\ge0\)thì \(Cn=2^{3^n}+1⋮3n+1\)nhưng \(⋮̸3^n+2\)5.CM:tổng hợp phương của 3 số tự nhiên liên tiếp n,n+1,n+2\(⋮9\forall n\ge0\)6. Cm: A=\(\frac{5^{125}-1}{5^{25}-1}\)không...
Đọc tiếp

1. Giả sử p và q là các số nguyên sao cho: \(\frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....-\frac{1}{1334}+\frac{1}{1335}\)

CMR: \(P⋮2003\)

2. CM:\(\forall n\in N,n\ge2\)thì\(An=2^{2^n}+4⋮10\)

3.CM: \(\forall n\in N,n\ge1\)thì \(Bn=4^n+15n-1⋮9\)

4.CM: \(\forall n\in Z,n\ge0\)thì \(Cn=2^{3^n}+1⋮3n+1\)nhưng \(⋮̸3^n+2\)

5.CM:tổng hợp phương của 3 số tự nhiên liên tiếp n,n+1,n+2\(⋮9\forall n\ge0\)

6. Cm: A=\(\frac{5^{125}-1}{5^{25}-1}\)không phải là một số nguyên tố 

7.Tìm tất cả các số nguyên tố P sao cho tổng của tất cả các ước số tự nhiên của các phương trình là 1 số chính phương

8. Biết P và \(8p^2-1\)cũng là số nguyên tố

9. Tìm tất cả các số nguyên tố có 4 chữ số \(\overline{abcd}\)sao cho \(\overline{ab}\)\(\overline{ac}\)là các số nguyên tố và \(b^2=\overline{cd}+b-c\)

10.Cho \(\overline{abc}\)là 1 số nguyên tố. CM phương trình: \(ax^2+bx+c=0\)không có nghiệm hữu tỉ

 

0
11 tháng 9 2019

\(3\left(x^2-2x-xy\right)+y^2=0\)

\(\Leftrightarrow3x^2-6x-3xy+y^2=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-2x^2-6x-xy=0\)

\(\Leftrightarrow\left(x-y\right)^2-2\left(x^2+2x+1\right)-x-2-xy=0\)

Đến đây thì .....

11 tháng 9 2019

Em thử nha, ko chắc:v

PT \(\Leftrightarrow3x^2-3x\left(2+y\right)+y^2=0\)

\(\Delta=\left[-3\left(2+y\right)\right]^2-12y^2=-3y^2+36y+36\)

\(\Leftrightarrow6-4\sqrt{3}\le y\le6+4\sqrt{3}\). Mà \(y\inℤ\) nên\(0\le y\le12\)

Rồi thay từng số y vào giải pt bậc 2 biến x. 

P/s: Em làm đúng ko ta?

27 tháng 7 2016

pt<=> \(x^4+2x^2+1-2x+2x^3=\left(x^2+1\right)\sqrt{x-x^3}\)

<=> \(\left(x^2+1\right)^2-2\left(x-x^3\right)=\left(x^2+1\right)\sqrt{x-x^3}\)

đặt \(x^2+1=a\left(a\ge1\right)\) và \(\sqrt{x-x^3}=b\left(b\ge0\right)\) thì ta có pt

\(a^2-2b^2=ab\)

<=> \(a^2-ab-2b^2=0\)

<=> \(a^2+ab-2ab-2b^2=0\)

<=> \(a\left(a+b\right)-2b\left(a+b\right)=0\)

<=> \(\left(a-2b\right)\left(a+b\right)=0\)

<=> \(\orbr{\begin{cases}a=2b\\a+b=0\end{cases}}\)

TH1: \(a\ge1;b\ge0=>a+b\ne0\)

TH2: \(a=2b\)

<=>\(x^2+1=2\sqrt{x-x^3}\)

<=> \(x^4+2x^2+1=4x-4x^3\)

<=> \(x^4+4x^3+2x^2-4x+1=0\)

đây là pt đối xứng nên ta thấy x=0 ko là nghiệm của pt nên chia 2 vế cho x^2 ta có 

\(x^2+4x+2-\frac{4}{x}+\frac{1}{x^2}=0\)

đặt \(x-\frac{1}{x}=y\)thì \(x^2+\frac{1}{x^2}=y^2+2\)

khi đó pt trên trở thành 

\(y^2+2+4y+2=0\)

<=> \(y^2+4y+4=0\)

<=>\(\left(y+2\right)^2=0\)

<=> \(y=-2\)

đến đây bạn tự thay vào giải nốt tìm x nha 

t

26 tháng 7 2016

thánh biết

7 tháng 9 2019

Đặt: \(\sqrt[3]{25-x^3}=t\Leftrightarrow t^3+x^3=25\Leftrightarrow\left(t+x\right)^3-3tx\left(t+x\right)=25\)(1)

pt trở thành: 

\(xt\left(x+t\right)=30\) Thế vào (1) ta có:

\(\left(t+x\right)^3-3.30=25\)

<=> \(t+x=\sqrt[3]{115}\)

=> \(xt=\frac{30}{\sqrt[3]{115}}\)

x, t là nghiệm của phương trình bậc 2:

 \(X^2-\sqrt[3]{115}X+\frac{30}{\sqrt[3]{115}}=0\)(1)

Đen ta <0 

=> Phương trình (1) vô nghiệm.

=> Không tồn tại x

Vậy phương trình ban đầu vô nghiệm.

25 tháng 7 2017

a)\(2x^4+2016=x^4\sqrt{x+3}+2016x\)

a)\(pt\Leftrightarrow2x^4-2016x+2014=x^4\sqrt{x+3}-2\)

\(\Leftrightarrow2x^4-2016x+2014=x^4\sqrt{x+3}-2\)

\(\Leftrightarrow2\left(x-1\right)\left(x^3+x^2+x-1007\right)=\frac{x^8\left(x+3\right)-4}{x^4\sqrt{x+3}+2}\)

\(\Leftrightarrow2\left(x-1\right)\left(x^3+x^2+x-1007\right)-\frac{\left(x-1\right)\left(x^8+4x^7+4x^6+4x^5+4x^4+4x^3+4x^2+4x+4\right)}{x^4\sqrt{x+3}+}=0\)

\(\Leftrightarrow\left(x-1\right)\left(2\left(x^3+x^2+x-1007\right)-\frac{\left(x^8+4x^7+4x^6+4x^5+4x^4+4x^3+4x^2+4x+4\right)}{x^4\sqrt{x+3}+}\right)=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

b)\(\sqrt[3]{81x-8}=x^3-2x^2+\frac{4}{3}x-2\)

bài này nghiệm khủng :vko liên hp dc, với sợ bị nhai lại nên đưa link tham khảo nhé :v

 Phương trình - hệ phương trình - bất phương trình - Diễn đàn Toán học

c)\(\sqrt{2-x^2}+\sqrt{2-\frac{1}{x^2}}=4-x-\frac{1}{x}\)

\(pt\Leftrightarrow\sqrt{2-x^2}-1+\sqrt{2-\frac{1}{x^2}}-1=2-x-\frac{1}{x}\)

\(\Leftrightarrow\frac{2-x^2-1}{\sqrt{2-x^2}+1}+\frac{2-\frac{1}{x^2}-1}{\sqrt{2-\frac{1}{x^2}}+1}=-\frac{x^2-2x+1}{x}\)

\(\Leftrightarrow\frac{1-x^2}{\sqrt{2-x^2}+1}+\frac{\frac{x^2-1}{x^2}}{\sqrt{2-\frac{1}{x^2}}+1}+\frac{x^2-2x+1}{x}=0\)

\(\Leftrightarrow\frac{-\left(x-1\right)\left(x+1\right)}{\sqrt{2-x^2}+1}+\frac{\frac{\left(x-1\right)\left(x+1\right)}{x^2}}{\sqrt{2-\frac{1}{x^2}}+1}+\frac{\left(x-1\right)^2}{x}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{-\left(x+1\right)}{\sqrt{2-x^2}+1}+\frac{\frac{x+1}{x^2}}{\sqrt{2-\frac{1}{x^2}}+1}+\frac{x-1}{x}\right)=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

2 tháng 11 2017

Đặt \(\sqrt{c.\left(a-c\right)}+\sqrt{c.\left(b-c\right)}\)  = A

Ta có A^2 = \(\left(\sqrt{\left(a-c\right).c}+\sqrt{c.\left(b-c\right)}\right)^2\)

Áp dụng bđt bunhiacopxki ta có A^2 <= \(\left(\sqrt{a-c}^2+\sqrt{c^2}\right).\left(\sqrt{c^2}+\sqrt{b-c^2}\right)\)

                                                       = (a-c+c).(c+b-c) = ab

<=> A<= \(\sqrt{ab}\)=> ĐPCM

Dấu"=" <=> a-c = c và c = b-c

<=> a=b=2c>0

2 tháng 11 2017

Ta có bất đẳng thức bunhicopxki

\(\sqrt{ax}+\sqrt{by}\le\sqrt{\left(a+x\right)\left(b+y\right)}\)

Áp dụng vào ta có:

\(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{\left(a-c+c\right)\left(b-c+c\right)}\le\sqrt{ab}\)

Dấu bằng xảy ra khi a-c = b-c

2 tháng 9 2019

\(VT=2\left(x^2-2.x.\frac{11}{4}+\frac{121}{16}\right)+\frac{47}{8}>0\)

=> \(VP>0\)=> x>1

pt <=> \(2\left(x^2-6x+9\right)=3\sqrt[3]{4x-4}-\left(x+3\right)\)

<=> \(2\left(x-3\right)^2=\frac{27\left(4x-4\right)-\left(x+3\right)^3}{9\sqrt[3]{\left(4x-4\right)^2}+3\left(x+3\right)\sqrt[3]{4x-4}+\left(x+3\right)^2}\)

<=> \(2\left(x-3\right)^2=\frac{-\left(x+15\right)\left(x-3\right)^2}{9\sqrt[3]{\left(4x-4\right)^2}+3\left(x+3\right)\sqrt[3]{4x-4}+\left(x+3\right)^2}\)

<=> \(\left(x-3\right)^2\left(2+\frac{x+15}{9\sqrt[3]{\left(4x-4\right)^2}+3\left(x+3\right)\sqrt[3]{4x-4}+\left(x+3\right)^2}\right)=0\)

x>1 => $\(2+\frac{x+15}{9\sqrt[3]{\left(4x-4\right)^2}+3\left(x+3\right)\sqrt[3]{4x-4}+\left(x+3\right)^2}>0\)

pT <=> \(\left(x-3\right)^2=0\)

<=> x=3

2 tháng 9 2019

E cảm ơn

17 tháng 7 2016

tìm số tự nhiên n và k sao cho A là số nguyên tố biết A=  n4 + 42k+1 

31 tháng 8 2019

đéo biết

24 tháng 8 2019

ĐK: \(\hept{\begin{cases}x^2-x+2\ge0\\2x^2+4x\ge0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\ge0\\x\le-2\end{cases}}\)

Ta có: \(VP=2\sqrt{x^2-x+2}-\sqrt{2x^2+4x}=\frac{2\left(x-2\right)^2}{2\sqrt{x^2-x+2}+\sqrt{2x^2+4x}}\ge0\)

=> \(VP=x-2\ge0\Rightarrow x\ge2\)

phương trình tương đương:

 \(2x-2\sqrt{x^2-x+2}+\sqrt{2x^2+4x+2}-x-2=0\)

\(\Leftrightarrow\frac{2\left(x-2\right)}{2x+2\sqrt{x^2-x+2}}+\frac{x^2-4}{\sqrt{2x^2+4x+2}+x+2}=0\)

\(\text{​​}\Leftrightarrow\left(x-2\right)\left[\frac{2}{2x+2\sqrt{x^2-x+2}}+\frac{x+2}{\sqrt{2x^2+4x+2}+x+2}\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\\frac{2}{2x+2\sqrt{x^2-x+2}}+\frac{x+2}{\sqrt{2x^2+4x+2}+x+2}\end{cases}=0}\left(1\right)\)

(1) vô nghiệm vì x >=2 

Vậy pt <=> x=2