K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2019

\(3^x+171=y^2\)

+) Với x = 0 ta có: \(1+171=y^2\)( loại )

+) Với x = 1, ta có: \(3+171=y^2\)( loại )

+) Với x > 1.

pt <=> \(9\left(3^{x-2}+19\right)=y^2\)

=> \(3^{x-2}+19=z^2\)với \(y=3z\)( z là số tự nhiên )

+) TH1: \(x-2=2k+1\)( k là số tự nhiên )

Ta có: \(3^{2k+1}+19=z^2\)

có: \(3^{2k+1}+19⋮2\)

nhưng \(3^{2k+1}+19=3^{2k}.3+1+16+2\): 4 dư 2

=> \(3^{2k+1}+19\) không phải là số chính phương

Vậy loại trường hợp này

+) TH2: \(x-2=2k\)( k là số tự nhiên )

Ta có: \(3^{2k}+19=z^2\)

<=> \(\left(z-3^k\right)\left(z+3^k\right)=19\) (1)

z, 3^k là số tự nhiên nên ( 1) <=> \(\hept{\begin{cases}z+3^k=19\\z-3^k=1\end{cases}\Leftrightarrow}\hept{\begin{cases}z=10\\k=2\end{cases}}\)=> x = 6; y = 30. Thử lại thấy thỏa mãn

Vậy....

10 tháng 8 2017

Mỗi biểu thức trong dấu căn có dạng:

\(1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}\)   ( Với \(k\ge2\))

Ta có:

\(1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}=\frac{k^2\left(k+1\right)^2+\left(k+1\right)^2+k^2}{k^2\left(k+1\right)^2}=\frac{k^4+2k^3+k^2+k^2+2k+1+k^2}{k^2\left(k+1\right)^2}\)

\(=\frac{k^4+2k^2\left(k+1\right)+\left(k+1\right)^2}{k^2\left(k+1\right)^2}=\frac{\left(k^2+k+1\right)^2}{\left(k\left(k+1\right)\right)^2}\)

\(\Rightarrow\sqrt{1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}}=\frac{k^2+k+1}{k^2+k}=1+\frac{1}{k\left(k+1\right)}=1+\frac{1}{k}-\frac{1}{k+1}\)

\(\Rightarrow S=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2013}-\frac{1}{2014}=2014-\frac{1}{2014}\)

22 tháng 9 2017

Mỗi biểu thức trong dấu căn có dạng:

1+1k2 +1(k+1)2    ( Với k≥2)

Ta có:

1+1k2 +1(k+1)2 =k2(k+1)2+(k+1)2+k2k2(k+1)2 =k4+2k3+k2+k2+2k+1+k2k2(k+1)2 

=k4+2k2(k+1)+(k+1)2k2(k+1)2 =(k2+k+1)2(k(k+1))2 

⇒√1+1k2 +1(k+1)2 =k2+k+1k2+k =1+1k(k+1) =1+1k −1k+1 

⇒S=1+1−12 +1+12 −13 +1+13 −14 +...+1+12013 −12014 =2014−12014 

3 tháng 12 2019

\(ĐKXĐ:x\ge2\)

\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x^2+2x-3}+\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(+\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)

\(TH1:\sqrt{x-2}-\sqrt{x+3}=0\Leftrightarrow\sqrt{x-2}=\sqrt{x+3}\)

\(\Leftrightarrow x-2=x+3\left(L\right)\)

\(TH2:\sqrt{x-1}-1=0\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\)(t/m đk)

Vậy x = 2

3 tháng 12 2019

\(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)

\(\Leftrightarrow\sqrt{x^2+12}-\sqrt{x^2+5}=3x-5\)

Dễ thấy \(VT>0\Rightarrow3x-5>0\Leftrightarrow x>\frac{5}{3}\)

\(pt\Leftrightarrow\left(\sqrt{x^2+5}-3\right)-\left(\sqrt{x^2+12}-4\right)+3x-6=0\)

\(\Leftrightarrow\frac{x^2-4}{\sqrt{x^2+5}+3}-\frac{x^2-4}{\sqrt{x^2+12}+4}+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{x+2}{\sqrt{x^2+5}+3}-\frac{x+2}{\sqrt{x^2+12}+4}+3\right)=0\)

Ta có: \(\frac{x+2}{\sqrt{x^2+5}+3}-\frac{x+2}{\sqrt{x^2+12}+4}\)\(=\left(x+2\right)\left(\frac{1}{\sqrt{x^2+5}+3}-\frac{1}{\sqrt{x^2+12}+4}\right)\)

\(=\left(x+2\right).\frac{\sqrt{x^2+12}-\sqrt{x^2+5}+1}{\left(\sqrt{x^2+5}+3\right)\left(\sqrt{x^2+12}+4\right)}>0\forall x>\frac{5}{3}\)

\(\Rightarrow x-2=0\Leftrightarrow x=2\)

Vậy x = 2

5 tháng 12 2017

giúp mình cái nhé

5 tháng 12 2017

a=34;

30 tháng 11 2019

Ta có: \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}=\frac{a^2+ab+1}{\sqrt{a^2+ab+2ab+c^2}}\ge\frac{a^2+ab+1}{\sqrt{a^2+ab+a^2+b^2+c^2}}=\sqrt{a^2+ab+1}\)

\(\sqrt{a^2+ab+1}=\sqrt{a^2+ab+a^2+b^2+c^2}=\sqrt{\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2+a^2+c^2}\)

\(=\frac{1}{\sqrt{5}}.\sqrt{\left(\frac{9}{4}+\frac{3}{4}+1+1\right)\left(\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2+a^2+c^2\right)}\)

\(\ge\frac{1}{\sqrt{5}}\sqrt{\left(\frac{3}{2}\left(a+\frac{b}{2}\right)+\frac{3}{2}b+a+c\right)^2}\)

\(=\frac{1}{\sqrt{5}}\left(\frac{5}{2}a+\frac{3}{2}b+c\right)\)

=> \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}a+\frac{3}{2}b+c\right)\)

Tương tự ta cũng chứng minh đc:

 \(\frac{b^2+bc+1}{\sqrt{b^2+3bc+a^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}b+\frac{3}{2}c+a\right)\)

\(\frac{c^2+ca+1}{\sqrt{c^2+3ca+b^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}c+\frac{3}{2}a+b\right)\)

=> \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}+\frac{b^2+bc+1}{\sqrt{b^2+3bc+a^2}}+\frac{c^2+ca+1}{\sqrt{c^3+3ca+b^2}}\ge\frac{1}{\sqrt{5}}\left(5a+5b+5c\right)\)

\(=\sqrt{5}\left(a+b+c\right)\)

Dấu "=" xảy ra <=> a = b = c =\(\frac{1}{\sqrt{3}}\)

29 tháng 11 2019

Ta có: \(\frac{1}{1+x}=2-\frac{1}{1+y}-\frac{1}{1+z}\)

\(=1-\frac{1}{1+y}+1-\frac{1}{1+z}=\frac{y}{1+y}+\frac{z}{1+z}\)

\(\ge2\sqrt{\frac{yz}{\left(1+y\right)\left(1+z\right)}}\)(BĐT Cô - si)

Tương tự, ta có: \(\frac{1}{1+y}\)\(\ge2\sqrt{\frac{xz}{\left(1+x\right)\left(1+z\right)}}\)\(\frac{1}{1+z}\)\(\ge2\sqrt{\frac{xy}{\left(1+x\right)\left(1+y\right)}}\)

Nhân từng vế của các bđt trên, ta được:

\(\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge8.\frac{xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

\(\Rightarrow8xyz\le1\Rightarrow xyz\le\frac{1}{8}\)

(Dấu "="\(\Leftrightarrow x=y=z=\frac{1}{2}\))

5 tháng 5 2017

Bình phương hai vế ta có:

 \(x+\sqrt{x+\sqrt{x+\sqrt{x}}}=y^2\Rightarrow\sqrt{x+\sqrt{x+\sqrt{x}}}=y^2-x=t\)

Tiếp túc bình phương và chuyển vế, ta có:

\(\sqrt{x+\sqrt{x}}=t^2-x=u\)

\(x+\sqrt{x}=u^2\)

Do y nguyên, x nguyên nên t nguyên, suy ra u nguyên, suy ra u2 nguyên, vậy thì \(\sqrt{x}\) nguyên.

Ta có \(\sqrt{x}\left(\sqrt{x}+1\right)=u^2\). Hai số tự nhiên liên tiếp có tích là số chính phương u2 nên \(\sqrt{x}=0\Rightarrow x=0.\)

Từ đó suy ra y = 0.

Vậy nghiệm của phương trình là (x; y) = (0; 0).

31 tháng 10 2017

Ta có: 

\(P\left(1\right)=a+b+c+d+1\)

\(P\left(2\right)=8a+4b+2c+d+16\)

\(P\left(3\right)=27a+9b+3c+d+81\)

\(\Rightarrow100P\left(1\right)-198P\left(2\right)+100P\left(3\right)\)

\(=100\left(a+b+c+d+1\right)-198\left(8a+4b+2c+d+16\right)+100\left(27a+9b+3c+d+81\right)\)

\(=1216a+208b+4c+2d+5032=100.10-198.20+100.30=40\)

Ta lại có: 

\(f\left(12\right)+f\left(-8\right)=12^4+12^3a+12^2b+12c+d+8^4-8^3a+8^2b-8c+d\)

\(=\left(1216a+208b+4c+2d+5032\right)+19800\)

\(=40+19800=19840\)

\(\Rightarrow P=\frac{19840}{10}+25=2009\)

25 tháng 11 2019

Đặt \(G\left(x\right)=f\left(x\right)-10x\)\(\Leftrightarrow\hept{f\left(x\right)=G\left(x\right)+10x}\)và \(G\left(x\right)\)có bậc 4 có hệ số cao nhất là 1

Từ đề bài ta có: \(\hept{\begin{cases}G\left(1\right)=f\left(1\right)-10=0\\G\left(2\right)=f\left(2\right)-20=0\\G\left(3\right)=f\left(3\right)-30=0\end{cases}}\)\(\Rightarrow x=1;2;3\)là 3 nghiệm của\(G\left(x\right)\)

\(\Rightarrow G\left(x\right)\)có dạng \(G\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-k\right)\)

\(\Rightarrow\hept{\begin{cases}G\left(12\right)=\left(12-1\right)\left(12-2\right)\left(12-3\right)\left(12-k\right)=11880-990k\\G\left(-8\right)=\left(-8-1\right)\left(-8-2\right)\left(-8-3\right)\left(-8-k\right)=7920+990k\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}f\left(12\right)=G\left(12\right)+12\times10=12000-990k\\f\left(-8\right)=G\left(-8\right)+10\times\left(-8\right)=7840+990k\end{cases}}\)

\(\Rightarrow f\left(12\right)+f\left(-8\right)=12000-990k+7840+990k=19840\)

\(\Rightarrow P=\frac{19840}{10}+25=2009\)

23 tháng 11 2019

A B C O I G J S K H L A' M N

a) Đặt J là trung điểm cạnh BC. Theo quan hệ vuông góc giữa đường kính và dây ta có ^OIC = ^OJC = 900

Vậy I thuộc đường tròn đường kính OC cố định (đpcm).

b) Kẻ đường kính BK của (O). d cắt CK tại điểm S. Ta có AK vuông góc AB, IS vuông góc AB

Suy ra IS // AK. Vì I là trung điểm cạnh AC của tam giác AKC nên S là trung điểm CK cố định (đpcm).

c) OJ cắt (O) tại hai điểm phân biệt là A' và L (A' thuộc cung lớn BC). Hạ AH vuông góc BC

Ta thấy \(AH+JL\le AL\le2R=A'L\Rightarrow AH\le A'L-JL=A'J\)

Suy ra \(S=\frac{AH.BC}{2}\le\frac{A'J.BC}{2}\)(không đổi). Vậy S lớn nhất khi A trùng A'.

d) Trên đoạn JB,JC lấy M,N sao cho JM = JN = 1/6.BC. Khi đó M,N cố định.

Đồng thời \(\frac{JG}{JA}=\frac{JM}{JB}=\frac{JN}{JC}=\frac{1}{3}\). Suy ra ^MGN = ^BAC = 1/2.Sđ(BC (Vì GM // AB; GN // AC)

Vậy G là các điểm nhìn đoạn MN dưới một góc không đổi bằng 1/2.Sđ(BC, tức là một đường tròn cố định (đpcm).

23 tháng 11 2019

Chào chú Minh.

25 tháng 7 2016

 \(\sqrt{1-xy}=\frac{\sqrt{1-xy}.x^2y^2}{x^2y^2}\)\(=\frac{\sqrt{x^4y^4-x^5y^5}}{x^2y^2}\)
có: \(x^5+y^5=2x^2y^2\Rightarrow x^2y^2=\frac{x^5+y^5}{2}\)
\(\frac{\sqrt{x^4y^4-x^5y^5}}{x^2y^2}=\frac{\sqrt{\left(\frac{x^5+y^5}{2}\right)^2-x^5y^5}}{x^2y^2}=\frac{\sqrt{\left(x^5-y^5\right)^2}}{2x^2y^2}=\frac{\left|x^5-y^5\right|}{2x^2y^2}\)
Do x, y hữu tỉ nên \(\frac{\left|x^5-y^5\right|}{2x^2y^2}\)hữu tỉ (đpcm)

25 tháng 7 2016

xy=0 tm
xy khác 0
\(\frac{x^5+y^5}{2x^2y^2}=1\Leftrightarrow\frac{x^3}{2y^2}+\frac{y^3}{2x^2}=1\Leftrightarrow\frac{x^6}{4y^4}+\frac{xy}{2}+\frac{x^6}{4x^4}=1\)
\(\Leftrightarrow\left(\frac{x^3}{2y^2}-\frac{y^3}{2x^2}\right)=1-xy\)=>dpcm