Cho tứ giác ABCD có AD=BC, gọi E và F theo thứ tự là trung điểm của AB, CD, O là giao điểm của AD và BC, H:G theo thứ tự là giao điểm của EF với OD,OC. Chứng minh OG=OH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ab . cde = edcba
= (10a + b ) . (100c + 10d + e) = edcba
= 10 . (100 + 10) . (a + b + c + d + e)
= 10 . 110 . (a + b + c + d + e)
=1100 . (a + b + c + d + e)
=> Số abcde có dạng 1100(a + b + c + d + e)
Và edcba có dạng 1100(e + d + c + b + a)
Sau đó làm tiếp tí nữa là xong! Mình mới học lớp 6 nên chỉ gợi ý cách làm cho bạn được thôi!

\(a,b,c\) là 3 cạnh của tam giác nên \(a,b,c>0\).
Chứng minh bất đẳng thức phụ
Giả sử: \(\sqrt{2\left(a^2+b^2\right)}\ge a+b\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2\ge2ab\) ( luôn đúng)
Giả sử: \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
\(\Leftrightarrow2\left(a+b+c\right)\le\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\)
Ta có: \(\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\ge a+b+b+c+a+c\)
\(\Rightarrow\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\ge2\left(a+b+c\right)\)
Vậy: \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\).
Ta chứng minh: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{3}\left(a+b+c\right)\)
Áp dụng bất đẳng thức Bu - nhi - a ta có:
\(\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{a^2+c^2}\right)^2\le\left(1+1+1\right)\left(a^2+b^2+b^2+c^2+a^2+c^2\right)\)
\(=6\left(a^2+b^2+c^2\right)\)
Ta cần chứng minh: \(6\left(a^2+b^2+c^2\right)< \left(\sqrt{3}\left(a+b+c\right)\right)^2\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)< \left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ac\)
\(\Leftrightarrow\left(a-b\right)^2+c^2< 2bc+2ac\)(1)
Do \(a,b,c\)là 3 cạnh của tam giác suy ra \(a-b< c\)
Gải sử \(a>b\) suy ra \(\left(a-b\right)^2< c^2\)
Thay vào (1 ) ta có \(c^2+c^2< 2bc+2ac\)
\(\Leftrightarrow2c^2< 2c\left(a+b\right)\)
\(\Leftrightarrow c< a+b\)( Đúng với a, b, c là 3 cạnh của tam giác)
Vậy BĐT đã được chứng minh.

Hình đa giác TenDaGiac1: DaGiac(B, C, 3) Hình đa giác TenDaGiac1: DaGiac(B, C, 3) Đoạn thẳng f: Đoạn thẳng [B, C] Đoạn thẳng g: Đoạn thẳng [C, A] Đoạn thẳng h: Đoạn thẳng [A, B] Đoạn thẳng i_1: Đoạn thẳng [E, D] Đoạn thẳng j: Đoạn thẳng [D, F] Đoạn thẳng m: Đoạn thẳng [E, G] Đoạn thẳng n: Đoạn thẳng [F, G] Đoạn thẳng p: Đoạn thẳng [D, K] Đoạn thẳng r: Đoạn thẳng [A, G] B = (0.28, 3.28) B = (0.28, 3.28) B = (0.28, 3.28) C = (5.78, 3.32) C = (5.78, 3.32) C = (5.78, 3.32) Điểm A: DaGiac(B, C, 3) Điểm A: DaGiac(B, C, 3) Điểm A: DaGiac(B, C, 3) Điểm D: Điểm trên f Điểm D: Điểm trên f Điểm D: Điểm trên f Điểm E: D đối xứng qua h Điểm E: D đối xứng qua h Điểm E: D đối xứng qua h Điểm F: D đối xứng qua g Điểm F: D đối xứng qua g Điểm F: D đối xứng qua g Điểm G: Giao điểm đường của k, l Điểm G: Giao điểm đường của k, l Điểm G: Giao điểm đường của k, l Điểm K: Giao điểm đường của h, m Điểm K: Giao điểm đường của h, m Điểm K: Giao điểm đường của h, m Điểm I: Giao điểm đường của g, j Điểm I: Giao điểm đường của g, j Điểm I: Giao điểm đường của g, j Điểm J: Giao điểm đường của g, m Điểm J: Giao điểm đường của g, m Điểm J: Giao điểm đường của g, m
a) Do D, E đối xứng qua AB nên tam giác EKD cân tại K.
Do EDFG là hình bình hành nên \(\widehat{KED}=180^o-\widehat{EDF}=180^o-\left(180^o-30^o-30^o\right)=60^o\)
Vậy KDE là tam giác đều.
b) Câu này phải ta KDFG mới là hình thang cân.
Ta có KDFG đã là hình thang.
Lại có \(\widehat{GFD}=\widehat{KED}\) ( Hai góc đối của hình bình hành)
và \(\widehat{KED}=\widehat{EKD}\) (tam giác KDE đều) và \(\widehat{EKD}=\widehat{KDF}\) (so le trong)
Vậy nên \(\widehat{GFD}=\widehat{KDF}\)
Vậy KDFG là hình thang cân (Hai góc kề một đáy bằng nhau)
c) Gọi I, J là giao điểm của DF và KG với AC.
Ta có ngay I là trung điểm DF nên J cũng là trung điểm KG.
Từ đó ta có \(\Delta AJK=\Delta AJG\) (Hai cạnh góc vuông)
\(\Rightarrow\widehat{GAC}=\widehat{KAJ}=60^o=\widehat{ACB}\)
Vậy AG // BC.

a)xét hình tứ giác APBC' có AM=BM
CM=MP
-> dpcm
chúng minh tương tự với cacshinhf còn lại nhé
còn phần b mình chịu
A B C M N P Q A' B' C' K
a) Ta có: \(\Delta\)AMP=\(\Delta\)BMC' (c.g.c) => ^MAP=^MBC' (2 góc tương ứng)
2 góc trên So le trong nên AP//BC' và AP=BC' (2 cạnh tương ứng)
Xét tứ giác APBC': AP//BC' và AP=BC' => AC'=BP => APBC' là hình bình hành.
Bạn cũng chứng minh tương tự với các tứ giác BPCA' và CPAB'.
b) Gọi giao điểm của CC' và AA' là K.
Ta có: AC'=BP (câu a) mà BP=CA' => AC'=CA' .
Mặt khác: AC'//BP và BP//CA' (câu a) => AC'//CA'
=> \(\Delta\)AKC'=\(\Delta\)A'KC (g.c.g) => AK=A'K và C'K=CK (2 cạnh tương ứng)
Giống như vậy: AB'=PC=A'B và chứng minh được AB'//A'B
=> \(\Delta\)AB'K=A'BK (c.g.c) => ^AKB'=^A'KB (2 góc tương ứng) mà A;K và A' thẳng hàng
=> 3 điểm B;K;B' thẳng hàng và có thể suy ra KB=KB' (2 cạnh tương ứng)
Xét hình AC'BA'CB': Có K là giao điểm của các đường AA'; BB' và CC' (cmt)
Lại có: AK=A'K; C'K=CK và KB=KB' (đã c/m) => Hình AC'BA'CB' có 1 tâm đối xứng.

Bài 1
Làm theo các bước sau:
Bước 1: Người 1 bốc 2003 viên sỏi.
Như vậy còn lại 8 viên sỏi trên bàn.
Bước 2:
Trường Hợp 1: Nếu người 2 bốc số sỏi trong các số 1, 3, 5, 7 thì bốc nốt số sỏi còn lại thì người 1 thắng.
Trường Hợp 2: Nếu người 2 bốc 2 viên sỏi thì còn lại 6 viên. Người 1 bốc tiếp 2 viên thì sẽ còn lại 4 viên. Sau lượt bốc của người 2, người 1 có thể bốc nốt số sỏi còn lại.
Làm theo cách đó, người 1 luôn thắng
B1: Người 1 bốc 2003 viên sỏi.
Như vậy còn lại 8 viên sỏi trên bàn.
B2:
TH1: Nếu người 2 bốc số sỏi trong các số 1, 3, 5, 7 thì bốc nốt số sỏi còn lại thì người 1 thắng.
TH2: Nếu người 2 bốc 2 viên sỏi thì còn lại 6 viên. Người 1 bốc tiếp 2 viên thì sẽ còn lại 4 viên. Sau lượt bốc của người 2, người 1 có thể bốc nốt số sỏi còn lại.

Đặt đa thức là M
\(\Rightarrow M=n^2\left(n^6-n^4-n^2+1\right)\)
\(\Rightarrow M=n^2\left[n^4\left(n^2-1\right)-\left(n^2-1\right)\right]\)
\(\Rightarrow M=n^2\left(n^2-1\right)\left(n^4-1\right)\)
\(\Rightarrow M=n\left(n-1\right)\left(n+1\right)n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\left(n-1\right)\left(n+1\right)\)
Ta có
n(n - 1)(n+1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 3
\(\Rightarrow\left[n\left(n-1\right)\left(n+1\right)\right]\left[n\left(n-1\right)\left(n+1\right)\right]\) chia hết cho 9
=> M chia hết cho 9
Mặt khác
Vì n là số lẻ nên n - 1 và n+1 là số chẵn
=> (n - 1)(n+1) chia hết cho 8
\(n\left(n-1\right)\left(n+1\right)n\left(n-1\right)\left(n+1\right)\left(n+1\right)\left(n-1\right)\) chia hết cho 128
=> M chia hết cho 128
Mà (9;128)=1
=> M chia hết cho 9x128=1152 ( đpcm )

Với n = 0 thì đúng.
Dễ thấy khi \(x^a+\frac{1}{x^a}=x^{-a}+\frac{1}{x^{-a}}\)nên ta chỉ cần chứng minh nó đúng với n \(\in\)Z+
Với n = 2 thì \(\Rightarrow x^2+\frac{1}{x^2}+2=\left(x+\frac{1}{x}\right)^2\)là số nguyên
\(\Rightarrow x^2+\frac{1}{x^2}\)là số nguyên.
Giả sử nó đúng đến n = k
\(\Rightarrow\hept{\begin{cases}\frac{1}{x^{k-1}}+x^{k-1}\\x^k+\frac{1}{x^k}\end{cases}}\)đều là số nguyên.
Ta chứng minh với n = k + 1 thì
xk+1 + \(\frac{1}{x^{k+1}}\)cũng là số nguyên
Ta có:
\(\left(x+\frac{1}{x}\right)\left(x^k+\frac{1}{x^k}\right)=x^{k+1}+\frac{1}{x^{k+1}}+x^{k-1}+\frac{1}{x^{k-1}}\)
\(\Rightarrow x^{k+1}+\frac{1}{x^{k+1}}\)là số nguyên.
Vậy ta có điều phải chứng minh là đúng.
A B C D E F O G H K
Trên tia đối của ED lấy điểm K sao cho E là trung điểm của DK.
Xét \(\Delta\)DAE=\(\Delta\)KBE (c.g.c) => AD=BK (2 cạnh tương ứng)
Mà AD=BC => BK=BC => \(\Delta\)BKC cân tại B => ^BCK=(1800-^KBC)/2 (1)
Lại có: ^DAE=^KBE (2 góc tương ứng) => AD//BK (2 góc so le trg bằng nhau)
hay OH//BK => ^HOG=^KBC ( Đồng vị) (2)
E là trung điểm DK; F là trung điểm DC => EF là đường trung bình \(\Delta\)DKC
=> EF//KC hay HG//KC => ^OGH=^BCK (3)
Thay (2) và (3) vào (1); ta được: ^OGH=(1800-^HOG)/2 => \(\Delta\)HOG cân tại O
=> OG=OH (đpcm)