Tìm 1 chữ số tận cùng của biểu thức:
\(3^{2020}-6^{2010}+9^{2010}-12^{2010}+15^{2010}-18^{2010}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử: \(c^2>a^2>b^2\)khi đó ta có:
\(\frac{b^2+c^2}{a^2+3}+\frac{c^2-a^2}{b^2+4^2}+\frac{a^2-b^2}{c^2+5}\le\frac{b^2+c^2}{b^2+3}+\frac{c^2-a^2}{b^2+3}+\frac{a^2-b^2}{b^2+3}=\frac{2c^2}{b^2+3}\le\frac{2}{3}.c^2\)
Như vậy ta có: \(a^2+b^2+c^2\le\frac{2}{3}.c^2\). Điều này xảy ra khi a = b = c.
A B C E F D
Từ A kẻ đường thẳng Ax vuông góc với AE, trên Ax lấy điểm D sao cho AD=AE. Ta được góc EAD = 90
tgABE=tgACD (c-g-c) do AB=AC( tg ABC vuông cân),góc BAE = góc CAD( cùng phụ với góc EAC),BE=AD(cách vẽ)
=>\(\hept{\begin{cases}BE=DC\\\widehat{B}=\widehat{ACD}\end{cases}}\)
Mà \(\widehat{B}+\widehat{ACF}=90\)nên \(\widehat{ACD}+\widehat{ACF}=90\)=>\(\widehat{DCF}=90\)=>tg DCF là tg vuông
tg EAF = tg FAD(c-g-c) do \(AE=AD,\widehat{EAF}=\widehat{FAD}\left(=45\right),AFchung\)
=> EF=FD
Xét tg vuông FCD vuông tại C có CF2+DC2=FD2( định lý Pytago) <=> CF2+BE2=EF2(do BE=DC,EF=FD)-cmt
đpcm
Do tổng của n số gấp đôi tổng của các số còn lại nên tổng đó bằng 2/3 tổng các số từ 1 đến 2015.
Ta tính tổng đó: \(S=\frac{2}{3}\left(\frac{\left(2015+1\right).2015}{2}\right)=1354080.\)
Gọi n số thỏa mãn yêu cầu đề bài là \(1\le a_1< a_2< ...< a_n\le2015.\)
Ta thấy \(a_1\ge1;a_2\ge a_1+1=2;...;a_n\ge n.\)
Vậy thì để tồn tại nhiều số nhất thì ta chọn : \(a_1=1;a_2=2;...;a_{n-1}=n-1;a_n\)
Tính tổng (n -1) số đầu tiên: \(S_{n-1}=\frac{\left(n-1+1\right)\left(n-1\right)}{2}=\frac{n\left(n-1\right)}{2}\le1354080\)
Ta chọn n max thỏa mãn điều kiện bên trên. Vậy n = 1645.
Vậy n max là 1645 với dãy số:
\(\hept{\begin{cases}a_1=1;a_2=2;...;a_{1644}=1644\\a_{1645}=1354080-\frac{1645.1644}{2}=1890\end{cases}}\)
Tương tự: \(a_n\le2015;a_{n-1}\le a_n-1=2014;...\)
Để chọn được n min thì \(\hept{\begin{cases}a_n=2015;a_{n-1}=2014;...;a_2=2015-n+2.\\a_1\end{cases}}\)
Tổng n - 1 số là : \(S_{n-1}=\frac{\left(2015+2015-n+2\right)\left(n-1\right)}{2}=\frac{\left(4032-n\right)\left(n-1\right)}{2}< 1354080\)
Vậy n min = 852.
Khi đó \(\hept{\begin{cases}a_2=1165;a_3=1166;...;a_{852}=2015\\a_1=1354080-\frac{851.3180}{2}=990\end{cases}}\)
Vậy n max = 1645 và n min = 852.
Điểm mấu chốt là nhận ra \(\hept{\begin{cases}1\le a_1;2\le a_2;...\\2015\ge a_n;2014\ge a_{n-1};...\end{cases}}\)
Câu hỏi của trần như - Toán lớp 7 - Học toán với OnlineMath
Bài 1 em tham khảo tại link trên nhé.
Mình vẽ được 2 hình dưới nhưng hình bên trái phù hợp với đpcm .Phải sửa đề thành : Trên nửa mặt phẳng bờ BM chứa C lấy điểm N sao cho góc BMN,BDE bù nhau.
A B C D E M N hay A B N C M E D
góc BDE = góc BAC (2 góc đồng vị của AC // DE) mà góc BMC,góc BAC bù nhau ; góc BMN,góc BDE bù nhau (gt)
=> góc BMC = góc BMN mà 2 tia MN,MC nằm trên cùng nửa mặt phẳng bờ BM (do gt) => MN,MC trùng nhau hay M,N,C thẳng hàng.
Làm tiếp:
\(=\left(1+\frac{1}{2}+.....+\frac{1}{2017}\right)-\left(1+\frac{1}{2}+....+\frac{1}{1008}\right)\)
\(=\frac{1}{1009}+\frac{1}{1010}+.........+\frac{1}{2017}\)
\(\Rightarrow\frac{\frac{1}{1009}+....+\frac{1}{2017}}{1-\frac{1}{2}+.....+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}}=1\)
Bài 2:
Đặt \(A=\frac{1}{2^2}+.......+\frac{1}{2^{800}}\)
\(4A=1+\frac{1}{2^2}+.....+\frac{1}{2^{798}}\)
\(\Rightarrow4A-A=1-\frac{1}{2^{800}}\)
\(\Rightarrow3A=1-\frac{1}{2^{800}}< 1\Rightarrow A< \frac{1}{3}\)
Vậy \(\frac{1}{2^2}+\frac{1}{2^4}+........+\frac{1}{2^{800}}< \frac{1}{3}\)
Bài 1:Tính
a, Xét biểu thức \(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).........\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)..........\left(1+\frac{n+2}{n}\right)}\) với\(n\in N\)
Ta có:\(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).......\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)......\left(1+\frac{n+2}{n}\right)}\)
\(=\frac{\frac{n+1}{1}.\frac{n+2}{2}........\frac{2n+2}{n+2}}{\frac{n+3}{1}.\frac{n+4}{2}.........\frac{2n+2}{n}}\)
\(=\frac{\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right)}{1.2.3.........\left(n+2\right)}}{\frac{\left(n+3\right)\left(n+4\right)........\left(2n+2\right)}{1.2.3.........n}}\)
\(=\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right).1.2.3.......n}{\left(n+3\right)\left(n+4\right)........\left(2n+2\right).1.2.3......\left(n+2\right)}\)
\(=\frac{\left(n+1\right)\left(n+2\right)}{\left(n+1\right)\left(n+2\right)}=1\)
Áp dụng vào bài toán ta có đáp số là:1
b, \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=-\frac{2}{3}\)
c,\(\frac{\frac{1}{6}-\frac{1}{39}+\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}=\frac{\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}{\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}=\frac{\frac{1}{3}}{\frac{1}{4}}=12\)
d,\(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}=\frac{2}{13}\)
e,Xét mẫu số ta có:
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..........+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)
\(=1+\frac{1}{2}-2.\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-2.\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-2.\frac{1}{2016}+\frac{1}{2017}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{2017}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+.........+\frac{1}{2016}\right)\)
Gọi biểu thức trên là A.
Chứng minh A > 50
\(A=1+\frac{1}{2}+\left(\frac{1}{2^1+1}+\frac{1}{2^2}\right)+\left(\frac{1}{2^2+1}+\frac{1}{6}+...+\frac{1}{2^3}\right)+...+\left(\frac{1}{^{2^{100-2}+1}}+...+\frac{1}{2^{100-1}}\right)\\ \)
\(A>1+\frac{1}{2}+\frac{1}{2^2}.2+\frac{1}{2^3}.2^2+...+\frac{1}{2^{100-1}}2^{100-2}\)
\(A>\left(\frac{1}{2}+\frac{1}{2}\right)+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)
\(< =>A>\frac{100}{2}=50\)
Chứng minh A<100
\(A=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{2^2}+\frac{1}{5}+...+\frac{1}{7}\right)+....+\left(\frac{1}{2^{100-2}}+\frac{1}{2^{100-2}+1}+...+\frac{1}{2^{100-1}-1}\right)\)-\(\frac{1}{2^{100-1}}\)
\(A< 1+\frac{1}{2}.2+\frac{1}{2^2}.2^2+...+\frac{1}{2^{100-2}}.2^{100-2}+\frac{1}{2^{100-1}}\)
\(A< 1+1+1+...+1+\frac{1}{2^{100-1}}\)
\(A< 1.99+\frac{1}{2^{100-1}}< 99+1=100\)
ta có : 1+1/2+1/3+....+1/2^100-1
= 1/2x2 +1/3x2 +1/4x2 +...+ 1/2^100 x2
= 2x(1/2+1/3+1/4+...+1/2^100)
=.................... làm đến đây mk tịt
Cách 2:
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(a^2+b^2+c^2=\frac{b^2-c^2+c^2-a^2+a^2-b^2}{a^2+3+b^2+4+c^2+5}=0\).
Vậy: \(a^2+b^2+c^2=0\Rightarrow\hept{\begin{cases}a=0\\b=0\\c=0\end{cases}}\).
Vậy M = 0.
\(a^2+b^2+c^2=\frac{b^2-c^2}{a^2+3}\le b^2-c^2\Rightarrow a^2\le-2c^2\Rightarrow c=0;a=0.\)
tương tự => a =b=c =0
Vậy M =0
Đặt \(f\left(n\right)=a_0+a_1+...+a_n-na_{n+1}\); Ta có \(f\left(0\right)=a_0\)
Bởi vì \(a_{n+2}\ge a_{n+1}\) nên ta có:
\(a_0+a_1+...+a_n-na_{n+1}>a_0+a_1+...+a_n+a_{n+1}-\left(n+1\right)a_{n+2}.\)
Vậy thì \(f\left(n\right)>f\left(n+1\right)\) hay \(f\left(n\right)\) là dãy đơn điệu giảm.
Bởi vậy, vì \(f\left(0\right)>0\) nên tồn tại duy nhất số m thỏa mãn \(f\left(m-1\right)>0\ge f\left(m\right).\)
Mặt khác, ta lại có:
\(a_0+a_1+...+a_{m-1}-\left(m-1\right)a_m>0;a_0+a_1+...+a_m-ma_{m+1}\le0\)
Từ đó suy ra:
\(a_m< \frac{a_0+a_1+...+a_m}{m}\le a_{m+1}\)
Đặt \(h\left(n\right)=a_0+a_1+...+a_m-ma_m\). Bởi vì \(a_{n+1}>a_n\) nên ta có:
\(a_0+a_1+...+a_n-na_n>a_0+a_1+...+a_n+a_{n+1}-\left(n+1\right)a_{n+1}.\)
Vậy \(h\left(n\right)\) cũng là dãy đơn điệu giảm.
Chú ý rằng: \(h\left(m+1\right)=a_0+a_1+...+a_{m+1}-\left(m+1\right)a_{m+1}\le0.\)
nên \(h\left(t\right)\le0\forall t>m.\) Vì vậy, \(h\left(n\right)>0\) sẽ không thỏa mãn với n > m. Vậy m là số duy nhất thỏa mãn.
Đây là bài tập trong đề thi IMO 2014 tại Nam Phi. Đề bài chính xác thì bất đẳng thức đằng sau có dấu bằng. Đây là bài cô dịch từ bài giải bằng tiếng anh của tác giả Gerhard Woeginger, Australia.
TA CÓ:
34=....1
MÀ 2020 CHIA HẾT CHO 4dư2=>32020 CÓ TẬN CÙNG LÀ 9
62=....6
MÀ 2010 CHIA HẾT CHO 2=>62010CÓ TẬN CÙNG LÀ6
92=...1
MÀ 2010 CHIA HẾT CHO2=>92010CÓ TẬN CÙNG LÀ1
124=...6
MÀ2010 CHIA HẾT CHO 4dư2=>122010CÓ TẬN CÙNG LÀ4
152=...5
MÀ 2010 CHIA HẾT CHO 2=>52010CÓ TẬN CÙNG LÀ5
184=...6
MÀ 2010 CHIA HẾT CHO 4dư2=>182010CÓ TẬN CÙNG LÀ4
CÓ:...9-...6+....1-....4+...5-....4=...1
=>chữ số tận cùng của biểu thức trên là 1
đầu tiên bạn lấy 3^2020(mod 1000)= 401
6^2010(mod 1000)=176
9^2010(mod 1000)=401
12^2010(mod 1000)=224
15^2010(mod 1000)=625
18^2010(mod 1000)=624
Ta có 401-176+401-224+625-624=406
Vậy chữ số tận cùng của biểu thức trên là : 6