Bài toán :
Viết các số từ 1 đến 2015 theo một thứ tự nào đó rồi lấy mỗi số trừ đi số thứ tự của nó được 2015 số mới. CMR : Trong các số mới này, có ít nhất 1 số chẵn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(P\left(0\right)=a_0=2^{10}\)
\(P\left(1\right)=a_0+a_1+a_2+...+a_{30}=\left(2+1+3\right)^{10}=6^{10}\)
Suy ra : \(S=a_1+a_2+...+a_{30}=P\left(1\right)-P\left(0\right)=6^{10}-2^{10}\)
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ac}{c+a}\Leftrightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ac}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}\\\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\\\frac{1}{c}+\frac{1}{a}=\frac{1}{a}+\frac{1}{b}\end{cases}}\)
\(\Leftrightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Leftrightarrow a=b=c\)
Thay vào M được \(M=\frac{3a^2}{3a^2}=1\)
Ta có:ab\(\ge\)10\(\Rightarrow\)ab2\(\ge\)100\(\Rightarrow\left(a+b\right)^3\ge100\Rightarrow a+b\ge4\)
Mặt khác:ab\(\le\)99\(\Rightarrow\)ab2\(\le\)9801\(\Rightarrow\left(a+b\right)^3\le9801\Rightarrow a+b\le21\)
Với a+b=4 thì ab2=64\(\Rightarrow\)ab=8(loại)
Với a+b=5 thì ab2=125(loại)
Với a+b=6 thì ab2=216(loại)
Với a+b=7 thì ab2=343(loại)
Xét lần lượt đến a+b=21 thì ta thấy có ab\(\in\){27,64} thỏa mãn bài toán
Từ đầu bài, đặt ab = x3 ; a+b=x2 (x thuộc N)
Vì 10 < ab < 100 => 8 < ab < 125 => 23 < x3 < 53 => 2<x<5
=> x=3 hoăc x=4
+) Xét x=3 ta có: x3 = 33 = 27
=> a = 2; b = 7 thỏa mãn ab2 = (a+b)3
Vì 272 = (2+7)3 (=729)
+) xét x=4 ta có: x3=43=64
=> a=6;b=4 thỏa mãn ab2 = (a+b)3
Vì 642 \(\ne\) (6+4)3
Vậy ab = 27
Mình nghĩ nên sửa đề lại 1 chút :
D là 1 điểm trên AC sao cho\(\widehat{ABD}=\frac{1}{3}\widehat{ABC}\).E là 1 điểm trên AB sao cho\(\widehat{ACE}=\frac{1}{3}\widehat{ACB}\)
Sau đây là hình vẽ :
A B C E D H G K F I
M N P E F Q
a/ Xét \(\Delta EFM\)và \(\Delta QFP\)có
\(\hept{\begin{cases}EF=QF\\\widehat{EFM}=\widehat{QFP}\\FM=FP\end{cases}}\)
\(\Rightarrow\Delta EFM=\Delta QFP\)
\(\Rightarrow EM=QP\)
Mà \(EM=NE\Rightarrow NE=QP\)
b/ Từ câu a ta có \(\widehat{EMF}=\widehat{QPF}\)
\(\Rightarrow\widehat{EPQ}=\widehat{EPM}+\widehat{FPQ}=\widehat{EPM}+\widehat{EMF}=\widehat{NEP}\left(1\right)\)
Xét \(\Delta NEP\) và \(\Delta QPE\)có
\(\hept{\begin{cases}EP\left(chung\right)\\NE=QP\\\widehat{NEP}=\widehat{QPE}\end{cases}}\)
\(\Rightarrow\Delta NEP=\Delta QPE\)
c/ Từ câu b/ ta suy ra \(\widehat{NPE}=\widehat{PEQ}\)
=>EF // NP
Lại từ câu b ta có
\(NP=EQ=EF+FQ=2EF\)
\(\Rightarrow EF=\frac{1}{2}NP\)
bài này động đến đường trung bình của tam giác
nếu khó hơn thì học sẽ ko cho trc điểm Q và các câu a và b
Thế x = 2 và x = \(\frac{1}{2}\)và phương trình đầu ta được
\(\hept{\begin{cases}f\left(2\right)+3f\left(\frac{1}{2}\right)=4\\f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}f\left(\frac{1}{2}\right)=\frac{1}{4}-3f\left(2\right)\left(1\right)\\f\left(2\right)+3.\left(\frac{1}{4}-3f\left(2\right)\right)=4\left(2\right)\end{cases}}\)
Ta có: (2) <=> 32f(2) + 13 = 0
\(\Leftrightarrow f\left(2\right)=\frac{-13}{32}\)
Tham gia cho nó đông vui.vắng vẻ quá
\(\hept{\begin{cases}f\left(2\right)+3f\left(\frac{1}{2}\right)=4\\f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}f\left(2\right)+3f\left(\frac{1}{2}\right)=4\\3f\left(\frac{1}{2}\right)+9f\left(2\right)=\frac{3}{4}\end{cases}}\)
Trừ cho nhau
\(8f\left(2\right)=\left(\frac{3}{4}-4\right)=-\frac{13}{4}\Rightarrow f\left(2\right)-\frac{13}{32}\)
P/s: Với giá trị nào của x thì f(x) nhận giá trị không âm
DO A LÀ SỐ CHÍNH PHƯƠNG VÀ A KHÁC 0 , A CÓ 1 CHỮ SỐ
=> A CÓ THỂ BẰNG 1 . 4 . 9
+, TH1 : A = 1
=> 1D LÀ SỐ CHÍNH PHƯƠNG
=> D = 6
=> C6 LÀ SỐ CHÍNH PHƯƠNG
=> C = 3 HOẶC BẰNG 1( TH 1 KHÔNG THỎA MÃN)
=> 1B36 LÀ SỐ CHÍNH PHƯƠNG
=> B = 9 ( DO 44^2 = 1936
+. TH2 : A= 4
=> 4D LÀ SỐ CHÍNH PHƯƠNG
=> D = 9
=> C9 LÀ SỐ CHÍNH PHƯƠNG
=> C HOẶC BẰNG 0 , HOẶC BẰNG 4
+. NẾU C = 0
=> 4B09 LÀ SỐ CHÍNH PHƯƠNG
=> LOẠI DO KHÔNG CÓ B THỎA MÃN
+, NẾU C = 4
=> 4B49 LÀ SỐ CHÍNH PHƯƠNG
=> KHÔNG TỒN TẠI B THỎA MÃN
+, A = 9
=> 9D LÀ SỐ CHÍNH PHƯƠNG
=> KHÔNG TÍM THẤY D THỎA MÃN
VẬY A= 1 , B = 9 , C=3 , D=6
a=1,4,9.
Nếu a=1→b=6→c=9, nhưng không có d thỏa mãn giả thiết
Nếu a=4→b=9, nhưng không có c thỏa mãn giả thiết.
Nếu a=9→b=, nhưng khôn có c thoản mãn giả thiết.
Vậy không tồn tại a,b,c,d thỏa đề ra !
Gọi 2 nhà "thông thái" vẫn cười... vô tư là A và B, nhà thông thái ngừng cười là C.
Ông C nghĩ như sau:
1- Người ta chỉ cười khi người khác bị bôi nhọ còn mình thì không sao.
2- Cả 3 đều là thông thái nên trình độ suy luận là suýt soát nhau.
3- (Quan trọng nhất !) Vì một lúc sau cả 3 vẫn cười nên C đặt mình vào vị trí của A và nghĩ rằng: A nghĩ B có nhọ, còn A thì không, nhưng nếu C cũng không có nhọ vậy thì B cười ai ? Rõ ràng là B cười A , nghĩ vậy A sẽ thôi cười. Nhưng thực tế A vẫn cười suy ra A đã nhìn thấy C có nhọ.
nhà thông thái nghĩ: 2 người kia nhìn mình cười thì trên mặt mình chắc cũng bị bôi nhọ giống như 2 người kia
Khoai quá bạn ơi chưa hiểu được đề cho lắm!