Cho hình thang ABCD có: AB//DC, góc A= 3 lần góc D, góc B = góc C, AB= 3cm, DC= 6cm. a) Tính số đo các góc của hình thang ? b) Tính đường cao AH, cạnh bên AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



3/4 tổ một bằng 1/2 tổ hai => Ta có sơ đồ sau:
8 người Tổ 1 Tổ 2
Nhìn vào sơ đồ ta thấy: Tổ 1 gồm 4 phần bằng nhau. Tổ 2 gồm 6 phần bằng nhau.
=> Hiệu số phần của tổ 2 và tổ 1 là: 6 - 4 = 2 (phần)
2 phần ứng với 8 người => Giá trị 1 phần là: 8 : 2 = 4 (người)
=> Tổ 1 có: 4 x 4 = 16 người
Tổ 2 có: 6 x 4 = 24 người
Cả hai tổ có: 16 + 24 = 40 người.
Có tất cả 40 công nhân !
100% đúng ! Yik đúng cho mk nha ! kb ko !

1 A;.I won"t feel well enough to go to station to meet him
B;I will meet him for you,how I recognize him
A;He small and he wearing a black cap
2..A:This place is dirty.B;I'm sorry.I will bring you another
3.In a few minutes'time when the clock will strickes six,I'm waiting for you here
4.If you calling her at six,she probably practise playing the piano
5.If he work hard,he will pass the entrane exam to the university.
6.If you come at the seven ,I"m working in my garden
7.we will be pleased ìf your school win the match
8.Tomorow after noon at this time,I will flying to Carribean
9.
mình llười đọc quá nên ko làm hết đc ming bạn thông cảm nha

Đặt \(d=\left(a+b+2,2a+b+1\right)\).
\(\Rightarrow a^2=\left(a+b+2\right)\left(2a+b+1\right)⋮d^2\)
\(\Rightarrow a⋮d\).
\(\left(2a+b+1\right)-\left(a+b+2\right)=a-1⋮d\Rightarrow1⋮d\).
Do đó \(d=1\).
Suy ra \(a+b+2,2a+b+1\)đồng thời là các số chính phương.

\(A=\frac{1}{2}-\frac{2}{2^2}+\frac{3}{2^3}-\frac{4}{2^4}+...+\frac{99}{2^{99}}-\frac{100}{2^{100}}\)
\(\Rightarrow2A=1-\frac{2}{2}+\frac{3}{2^2}-\frac{4}{2^3}+\frac{5}{2^4}-\frac{6}{2^5}+\frac{7}{2^6}-...+\frac{99}{2^{98}}-\frac{100}{2^{99}}\)
Cộng vế theo vế ta được: \(3A=1+\left(\frac{1}{2}-\frac{2}{2}\right)+\left(-\frac{2}{2^2}+\frac{3}{2^2}\right)+\left(\frac{3}{2^3}-\frac{4}{2^3}\right)+\left(-\frac{4}{2^4}+\frac{5}{2^4}\right)+...+\left(\frac{99}{2^{99}}-\frac{100}{2^{99}}\right)-\frac{100}{2^{100}}\)
\(\Rightarrow3A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}+...+\frac{1}{2^{98}}-\frac{1}{2^{99}}-\frac{100}{2^{100}}\)
Xét \(B=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}+\frac{1}{2^{98}}-\frac{1}{2^{99}}\)
\(\Rightarrow2B=2-1+\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{97}}-\frac{1}{2^{98}}\)
Cộng vế theo vế ta được: \(3B=2+\left(1-1\right)+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{2^2}-\frac{1}{2^2}\right)+...+\left(\frac{1}{2^{98}}-\frac{1}{2^{98}}\right)-\frac{1}{2^{99}}\)
\(\Rightarrow3B=2-\frac{1}{2^{99}}< 2\Rightarrow B< \frac{2}{3}\)
Mà \(3A=B-\frac{100}{2^{100}}\Rightarrow3A< B< \frac{2}{3}\Rightarrow A< \frac{2}{9}\)

\(x=\sqrt[3]{2}+\sqrt[3]{3}\)
\(\Leftrightarrow x^3=2+3+3\sqrt[3]{2.3}\left(\sqrt[3]{2}+\sqrt[3]{3}\right)\)
\(\Leftrightarrow x^3-5=3\sqrt[3]{6}x\)
\(\Leftrightarrow x^9-15x^6+75x^3-125=162x^3\)
\(\Leftrightarrow x^9-15x^6-87x^3-125=0\)(1)
Nếu phương trình (1) có nghiệm hữu tỉ thì nghiệm đó có dạng \(\frac{p}{q}\)với \(p\)là ước của \(125\), \(q\)là ước của \(1\).
Do đó nếu (1) có nghiệm thì nghiệm đó chỉ có thể là thuộc tập hợp: \(\left\{-125,-25,-5,-1,1,5,25,125\right\}\).
Thử lần lượt các giá trị trên ta đều thấy không thỏa mãn.
Do đó phương trình (1) không có nghiệm hữu tỉ.
Mà \(x=\sqrt[3]{2}+\sqrt[3]{3}\)là một nghiệm của phương trình (1).
Do đó \(x=\sqrt[3]{2}+\sqrt[3]{3}\)là số vô tỉ.
VÌ : \(\sqrt{2}\)+\(\sqrt{3}\)là số vô tỉ
=> ....
Mới lớp 8 nên ko bt gì hết ;-;
10 nha