trong mặt phẳng tọa độ Oxy cho vecto u= (3,1) và đường thẳng d :2x- y=0 .Tìm phương trình đường thẳng d' là ảnh của đường thẳng d qua phép dời hình có được bằng cách thực hiện liên tiếp phép quay Q (O; 90° ) và phép tịnh tiến theo vecto u ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\sin^25x+1=\cos^23x\)
<=> \(\sin^25x+1-\cos^23x=0\)
<=> \(\frac{1-\cos10x}{2}+1-\frac{\cos6x+1}{2}=0\)
<=> \(\cos10x+\cos6x=2\)
Mà \(\cos10x;\cos6x\ge1\)=> \(\cos10x+\cos6x\ge2\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\cos10x=1\\\cos6x=1\end{cases}}\Leftrightarrow\hept{\begin{cases}10x=k2\pi\\6x=l2\pi\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{k\pi}{5}\\x=\frac{l\pi}{3}\end{cases}};k,l\in Z\Leftrightarrow x=m\pi;m\in\)

Ta có công thức Pascal: \(C^m_n+C^{m+1}_n=C^{m+1}_{n+1}\)
Áp dụng vào biểu thức đề cho, ta được: \(C^{k+1}_{2002}\le C^{1001}_{2002}\)
Điều này đúng với mọi (k+1) đi từ 1 đến 2001 (Ta có thể dễ dàng nhận ra điều này khi nhìn vào tam giác Pascal để nhận xét rằng hệ số ngay chính giữa luôn lớn nhất)
Chứng minh: Xét \(C^{k+1}_{2002}-C^k_{2002}=\frac{2002!}{\left(2002-k-1\right)!.\left(k+1\right)!}-\frac{2002!}{\left(2002-k!\right).k!}\)
\(=\frac{2002!.\left(2002-k\right)}{\left(2002-k\right)!.\left(k+1\right)!}-\frac{2002!.\left(k+1\right)}{\left(2002-k\right)!.\left(k+1\right)!}=\frac{2002!}{\left(2002-k\right)!.\left(k+1!\right)}\left(2001-2k\right)\)
+) \(k< 1000,5\Rightarrow2001-2k>0\Rightarrow C^{k+1}_{2002}-C^k_{2002}>0\Rightarrow C^{k+1}_{2002}>C^k_{2002}\)
+) \(k>1000,5\Rightarrow2001-2k< 0\Rightarrow C^{k+1}_{2002}-C^k_{2002}< 0\Rightarrow C^{k+1}_{2002}< C^k_{2002}\)
Vậy dãy số gồm các số hạng có dạng \(C_{2002}^{k+1}\)sẽ tăng dần khi k đi từ 1 tới 1001,5 và giảm dần khi k đi từ 1001,5 tới 2001.
Vậy \(C_{2002}^{k+1}\)lớn nhất khi \(k+1=1001\)---> ĐPCM