Tìm chữ số thập phân thứ 22 sau dấu phẩy của số \(\sqrt[3]{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có \(\hept{\begin{cases}x+y=a+b\\x^3+y^3=a^3+b^3\end{cases}\left(1\right)}\)
\(\left(1\right)\Leftrightarrow\hept{\begin{cases}x+y=a+b\\\left(x+y\right)^3-3xy\left(x+y\right)=\left(a+b\right)^3-3ab\left(a+b\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=a+b\\xy\left(a+b\right)=ab\left(a+b\right)\end{cases}\left(2\right)}\)
Nếu \(a+b\ne0\)thì \(\left(2\right)\Leftrightarrow\hept{\begin{cases}x+y=a+b\\xy=ab\end{cases}}\)
=> x,y là 2 nghiệm của phương trình \(X^2-\left(a+b\right)X+ab=0\)
Giải ra ta có \(\hept{\begin{cases}x=b\\y=a\end{cases};\hept{\begin{cases}x=a\\y=b\end{cases}}}\)\(\Rightarrow x^{2011}+y^{2011}=a^{2011}+b^{2011}\)(3)
Nếu \(a+b=0\Rightarrow a=-b\)
Ta có hệ phương trình \(\hept{\begin{cases}x+y=0\\x^3+y^3=0\end{cases}\Rightarrow x=-y}\)
\(\Rightarrow\hept{\begin{cases}x^{2011}+y^{2011}=0\\a^{2011}+y^{2011}=0\end{cases}}\)\(\Rightarrow x^{2011}+y^{2011}=a^{2011}+b^{2011}\)(4)
Từ (3) và (4) => đpcm

\(\left(\Sigma\frac{1}{\left(a+b\right)^2}\right)\left(2abc+\Sigma a^2\left(b+c\right)\right)=\Sigma\frac{a\left(b+c\right)^2+\left(a^2+bc\right)\left(b+c\right)}{\left(b+c\right)^2}=\Sigma a+\Sigma\frac{a^2+bc}{b+c}\)
Mặt khác ta có :
\(\left(\Sigma\frac{a^2+bc}{b+c}\right)\left(\Sigma a\right)=\Sigma\frac{a^3+abc}{b+c}+\Sigma\left(a^2+bc\right)\) ( nhân vào xong tách )
\(=\Sigma\frac{a^3+abc}{b+c}-\Sigma a^2+\Sigma\left(2a^2+bc\right)=\Sigma\frac{a\left(a-b\right)\left(a-c\right)}{b+c}+\Sigma\left(2a^2+bc\right)\) ( * )
Theo BĐT Vornicu Schur chứng minh được ( * ) không âm.
do đó : \(\Sigma\frac{a^2+bc}{b+c}\ge\frac{\Sigma\left(2a^2+bc\right)}{\Sigma a}\)
Theo đề bài , cần chứng minh : \(\left(\Sigma ab\right)\left(\Sigma\frac{1}{\left(a+b\right)^2}\right)\ge\frac{9}{4}\)
Kết hợp với dòng đầu tiên t cần c/m :
\(\left(\Sigma ab\right)\left(\Sigma a+\frac{\Sigma\left(2a^2+bc\right)}{\Sigma a}\right)\ge\frac{9}{4}\left(2abc+\Sigma a^2\left(b+c\right)\right)\)
Quy đồng lên, ta được :
\(\Sigma a^3\left(b+c\right)\ge2\Sigma\left(ab\right)^2\Leftrightarrow\Sigma ab\left(a-b\right)^2\ge0\)
\(\Rightarrow\)đpcm

Thực hiện phép chia ta có:
Ta có: \(x^3-2x^2+7x-7=\left(x^2+3\right)\left(x-2\right)+4x-1\)
\(x^3-2x^2+7x-7\) chia hết cho \(x^2+3\)
=> \(4x-1⋮x^2+3\) (1)
=> \(4x^2-x=x\left(4x-1\right)⋮x^2+3\)
Mà: \(4x^2+12=4\left(x^2+3\right)⋮x^2+3\)
=> \(\left(4x^2-x\right)-\left(4x^2+12\right)⋮x^2+3\)
=> \(-x-12⋮x^2+3\)
=> \(x+12⋮x^2+3\)
=> \(4x+48⋮x^2+3\) (2)
Từ (1); (2) => \(\left(4x+48\right)-\left(4x-1\right)⋮x^2+3\)
=> \(49⋮x^2+3\)
=> \(x^2+3\in\left\{\pm1;\pm7;\pm49\right\}\) vì \(x^2+3\ge3\) với mọi x
=> \(\begin{cases}x^2+3=7\\x^2+3=49\end{cases}\Rightarrow\orbr{\begin{cases}x^2=4\\x^2=46\left(loại\right)\end{cases}}\)
Với \(x^2=4\Rightarrow x=\pm2\) thử vào bài toán x=-2 loại. x=2 thỏa mãn
Vậy x=2

+ Xét tg OMN có IM=IO và KN=KO => IK là đường trung bình của tg OMN => IK//MN
+ Xét hình thang IKNM có PI=PM và QK=QN => PQ là đường trung bình của hình thang IKNM => PQ//IK//MN
+ Xét tg IMN có PI=PM; PH//MN => PH là đường trung bình của tg IMN => PH=MN/2
+ Xét tg KMN chứng minh tương tự cũng có QJ=MN/2
=> PH+QJ=(PJ+JH)+(QH+JH)=PJ+QH+2JH=MN (*)
+ Xét tg MIK có PI=PM; PJ//IK => PJ là đường trung bình của tg MIK => PJ=IK/2
+ Xét tg NIK chững minh tương tự cũng có QH=IK/2
Thay PJ=QH=IK/2 vào (*)
=> PJ+QH+2JH=IK/2+IK/2+2JH=MN => IK+2JH=MN => JH=(MN-IK)/2

Do xyz = 1, ta có thể đặt \(a=\frac{x}{x-1},\)\(b=\frac{y}{y-1},\)\(c=\frac{z}{z-1}\)
Ta có \(abc=\frac{x}{x-1}.\frac{y}{y-1}.\frac{z}{z-1}=\frac{xyz}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}=\frac{1}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}\) (1)
Mặt khác \(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(\frac{x}{x-1}-1\right).\left(\frac{y}{y-1}-1\right).\left(\frac{z}{z-1}-1\right)\)
\(=\frac{x-x+1}{x-1}.\frac{y-y+1}{y-1}.\frac{z-z+1}{z-1}=\frac{1}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}\)(2)
So sánh (1) và (2) ta có \(abc=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)\(\Leftrightarrow\)\(abc=abc-ab-bc-ca+a+b+c-1\)\(\Leftrightarrow\)\(ab+bc+ca-a-b-c+1=0\) (3)
Mà với mọi a, b, c ta luôn có \(\left(a+b+c-1\right)^2\ge0\)
Hay \(a^2+b^2+c^2+2\left(ab+bc+ca-a-b-c+1\right)-1\ge0\) (4)
Thay (3) vào (4) ta được \(a^2+b^2+c^2\ge1\) hay \(\frac{x^2}{\left(x-1\right)^2}+\frac{y^2}{\left(y-1\right)^2}+\frac{z^2}{\left(z-1\right)^2}\ge1\)

?o?n th?ng c: ?o?n th?ng [A, B] c?a H�nh tam gi�c TenDaGiac1 ?o?n th?ng a: ?o?n th?ng [B, C] c?a H�nh tam gi�c TenDaGiac1 ?o?n th?ng b: ?o?n th?ng [C, A] c?a H�nh tam gi�c TenDaGiac1 ?o?n th?ng h: ?o?n th?ng [B, D] ?o?n th?ng i: ?o?n th?ng [C, E] ?o?n th?ng m: ?o?n th?ng [B, I] ?o?n th?ng n: ?o?n th?ng [K, C] ?o?n th?ng p: ?o?n th?ng [I, K] ?o?n th?ng q: ?o?n th?ng [J, O] ?o?n th?ng r: ?o?n th?ng [D, O] ?o?n th?ng s: ?o?n th?ng [E, O] A = (2.65, 5.97) A = (2.65, 5.97) A = (2.65, 5.97) B = (-6.4, -9.49) B = (-6.4, -9.49) B = (-6.4, -9.49) C = (19.32, -10.71) C = (19.32, -10.71) C = (19.32, -10.71) ?i?m E: Giao ?i?m c?a f, c ?i?m E: Giao ?i?m c?a f, c ?i?m E: Giao ?i?m c?a f, c ?i?m D: Giao ?i?m c?a g, b ?i?m D: Giao ?i?m c?a g, b ?i?m D: Giao ?i?m c?a g, b ?i?m I: Giao ?i?m c?a j, k ?i?m I: Giao ?i?m c?a j, k ?i?m I: Giao ?i?m c?a j, k ?i?m K: Giao ?i?m c?a j, l ?i?m K: Giao ?i?m c?a j, l ?i?m K: Giao ?i?m c?a j, l ?i?m O: Trung ?i?m c?a a ?i?m O: Trung ?i?m c?a a ?i?m O: Trung ?i?m c?a a ?i?m J: Trung ?i?m c?a E, D ?i?m J: Trung ?i?m c?a E, D ?i?m J: Trung ?i?m c?a E, D
Gọi O là trung điểm BC, J là trung điểm DE. Do tam giác BEC vuông tại E mà EO là trung tuyến ứng với cạnh huyền nên OE = OB = OC. Tương tự OD = OB = OC. Từ đó ta có OE = OD hay tam tam giác OED cân tại O.
Lại có J là trung điểm DE nên \(OJ\perp DE\). Vậy thì OJ // BI // CK. Mà O là trung điểm BC nên OJ là đường trung bình hình thang CBKI. Vậy thì JI = JK.
Ta có \(JI=JK\Rightarrow JI-JE=JK-JD\Rightarrow EI=DK\left(đpcm\right)\)

a) Đặt A=(x+2)(x+3)(x+4)(x+5)-24
= (x+2)(x+5)(x+3)(x+4)-24
= (x^2+7x+10)(x^2+7x+12)-24
Đặt x^2+7x+11 = a thay vào A ta được :
A=(a-1)(a+1)=a^2-25 = a^2 - 5^2 = (a-5)(a+5) ( 2)
Thế a vào (2) ta được :
A=(x^2+7x+11-5)(x^2+7x+11+5)
= (x^2+7x+6)(x^2+7x+16)
b) = (x2+8x+7)(x2+8x+15)+15
Đặt X=x2+8x+11
f(x) = (X-4)(X+4)+15
= X2-16+15
= X2-12
= (X-1)(X+1)
=> f(x)= (x2+8x+11-1)(x2+8x+11+1)
f(x) = (x2+8x+10)(x2+8x+12)
Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:
f(x) = (x2+8x+10)(x2+8x+12)
= (x2+8x+10)[(x2+2x)+(6x+12)]
= (x2+8x+10)[x(x+2)+6(x+2)]
= (x+2)(x+6)(x2+8x+10)
d) 2x4 - 3x3 - 7x2 + 6x + 8 = (x - 2)(2x3 + x2 - 5x - 4)
Ta lại có 2x3 + x2 - 5x - 4 là đa thức có tổng hệ số của các hạng tử bậc lẻ và bậc chẵn bằng nhau nên có một nhân tử là x+1 nên 2x3 + x2 - 5x - 4 = (x+1)(2x2-x-4)
Vậy 2x4 - 3x3 - 7x2 + 6x + 8 = (x-2)(x+1)(2x2-x-4)
a) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left[\left(x-1\right)\left(x+2\right)\right].\left[x\left(x+1\right)\right]=24\)
\(=\left(x^2+2x-x-2\right)\left(x^2+x\right)=24\)
\(=\left(x^2+x-2\right)\left(x^2+x\right)=24\)
\(=\left[\left(x^2+x-1\right)-1\right].\left[\left(x^2+x-1\right)+1\right]=24\)
\(=\left(x^2+x-1\right)^2-1=24\)
\(=\left(x^2+x-1\right)^2=25\)
xin lỗi mk chỉ làm được đến đây thôi cậu làm tiếp nhé

A B C I N M J P Q R K
Gọi AJ là đường trung tuyến của \(\Delta\)ABC. Đường thẳng qua N song song AB cắt BC tại P.
Đường thẳng qua C song song AB cắt đường thẳng qua M song song BC và AJ lần lượt tại Q,R.
Ta thấy \(\Delta\)MAN có đường cao AI đồng thời là đường phân giác nên \(\Delta\)MAN cân tại A
=> I cũng là trung điểm cạnh MN. Từ đó \(\Delta\)MBI = \(\Delta\)NPI (g.c.g) => NP = BM; ^INP = ^IMB
Mà NP // BM // CQ, BM = CQ nên NP // QC, NP = QC => Tứ giác NPQC là hình bình hành
Nếu ta gọi K là trung điểm PC thì N,K,Q thẳng hàng
Chú ý rằng \(\Delta\)NPC ~ \(\Delta\)ABC (g.g) với trung tuyến tương ứng NK,AJ => \(\Delta\)NPK ~ \(\Delta\)ABJ (c.g.c)
=> ^PNQ = ^PNK = ^BAJ. Kết hợp với ^INP = ^IMB (cmt) suy ra ^MNQ = ^INP + ^PNQ = ^BAJ + ^IMB (1)
Mặt khác: \(\Delta\)ABJ = \(\Delta\)RCJ (g.c.g) => AB = CR < AC => ^BAJ = ^CRJ > CAJ
Điều đó có nghĩa là ^BAJ > ^BAC/2 = ^BAI => ^BAJ + ^IMB > ^BAI + ^IMB = 900 (2)
Từ (1) và (2) suy ra ^MNQ > 900 => MQ là cạnh lớn nhất trong \(\Delta\)QMN => MN < MQ = BC
Vậy MN < BC.

TH1: M nằm giữa A và B
A B C D E F H M K P Q R N
kẻ MQ_|_ DC tại Q
FN_|_DC tại N
EH_|_DC tại H
ta có E là trung điểm của BD; F là trung điểm của AC
=> EF là đuờng trung bình ứng với cạnh DC
=> EF//DC
ta có MQ_|_DC tại Q mà EF//DC
=> MQ_|_EF tại R
ta có: EH_|_DC
FN_|_DC
MQ_|_DC
MK_|_DC
=> EH//FN//MQ//MK
ta có góc MFE= góc FKD(MK chung và EF//NK)
xét 2 tam giác vuông MFR và FKN có:
FM=FK(gt)
góc MFE= góc FKD(cmt)
=> tam giác FMR=tam giác FKN(CH-GN)
=> RF=NK(1)
ta có góc MEF=góc EHC( do MH chung và EF//DC)
xét 2 tam giác vuông MER và EHP có:
góc MEF= góc EHC(cmt)
ME=EH(gt)
=> tam giác MER= tamgiác EHP(CH-GN)
=> ER=HP(2)
ta có: EF//PN
EH//FN
=> EF=HN(3)
từ (1)(2)(3) =>
EF=HN
RF=NK
ER=HP
ta có : HK=HP+PN+NK=ER+RF+EF=EF+EF
=>HK=2EF
TH2:M trùng A=> AC trùng MK=> C trùng K
M trùng A nên ME cũng trùng MH
A B C D E F H K M P
kẻ FP//EH ( P thuộc DC)
xét tam giác EAB và tam giác EHD có':
góc AEB= góc DEH(2 góc đối đỉnh)
ED=EB(gt)
góc BAE= góc EHD( AB//CD)
=> tam giác EAB= tam giác EHD(g.c.g)
=> AE=EH=1/2AH
ta có: E là trung điểm của AH; F là trung điểm của AC
=> EF là đường trung bình của tam giác AHC
=> EF//DC
EH//FP
=>tứ giác EFPH là hình bình hành
=> EH=FP
xét tam giác AEF và tam giác FCPcó:
AF=FC(gt)
góc AFE= góc FCP(EF//DC)
EH=FP(cmt)
=> tam giác AEF= tam giác FCP(c.g.c)
=>EF=PC
mà EF=HP( do tứ giác EFPH là hình bình hành)
=> EF=HP=PK
ta có: HK=HP+PK=EF+EF=2EF
TH3:M trùng B=>BD trùng MH và BF trùng MK
A B C D E F M K H P
kẻ EP // FK
xét tam giác FBA và tam giác FKC có:
FA=FC(gt)
góc AFB= góc KFC( 2 góc đối đỉnh)
góc BAF= góc KCF( AB//CD)
=> tam giác FBA= tam giác FKC(g.c.g)
=> FB=FK
ta có E là trung điểm của BD ; F là trung điểm của BK
=> EF là đường trung bình của tam giác BDK
=> EF//PK
mà EP//FK
=> EF=PK và EP=FK
ta có: EF//DP
BF//EP
=> góc EBF= góc DEP
xét tam giác BEF và tam giác EDP có:
ED=EB(gt)
góc BEF= góc EDP(EF//DC)
góc DEP= góc EBF(cmt)
=> tam giác BEF= tam giác EDP(g.c.g)
=> DP=EF và bằng PK
ta có: HK=(hay DP)HP+PK=EF+EF
=> HK=2EF
từ 3 trường hợp nêu trên => nếu M nằm giữa AB, M trùng A hoặc M trùng B thì độ dài của HK vẫn không đổi và luôn bằng 2EF
vậy độ dài của HK không đổi và luôn bằng 2EF khi M di động trên AB
vì HK luôn bằng 2EF nên độ dài k đổi khi M di động trên AB
là số 1
so 1 nhe