cm 102021+8 chia hết cho 79
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
công thức để làm :10n+8=9.11...112 (có n-1 chữ số 1, n>1)
a chia hết cho bn thì a phải chia hết cho b
11...12 luôn ko chia hết cho 7 (n chữ số 1 , n khác 2 )
ta có: 102021+8=9.11...112(2020 chữ số 1)
vì 9 ko chia hết cho 7 , 11...112 ko chia hết cho 7 và (9,11...12)=1 suy ra 9.11...112 ko chia hết cho 7 suy ra 102021+8 ko chia hết cho 7 suy ra điều cm trên là sai
nếu mình sai cho mình xin lỗi nha
ta có :
\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
\(\hept{\begin{cases}\frac{y}{x+y+z+t}< \frac{y}{y+z+t}< \frac{y+x}{x+y+z+t}\\\frac{z}{x+y+z+t}< \frac{z}{x+z+t}< \frac{z+y}{x+y+z+t}\\\frac{t}{x+y+z+t}< \frac{t}{x+y+t}< \frac{t+z}{x+y+z+t}\end{cases}}\)
Cộng lại ta có : \(1< M< 2\) Vậy M không phải số tự nhiên
x,y,z,t thuộc N khác 0 nên x,y,z,t thuộc N sao
=> x/x+y+z > 0
=> x/x+y+z > x/x+y+z+t
Tương tự : y/x+y+t > y/x+y+z+t
z/y+z+t > z/x+y+z+t
t/x+z+t > t/x+y+z+t
=> M > x+y+z+t/x+y+z+t = 1
Lại có : x < x+y+z => x/x+y+z < 1 => 0 < x/x+y+z < 1
=> x/x+y+z < x+t/x+y+z+t
Tương tự : y/x+y+t < y+z/x+y+z+t
z/y+z+t < z+x/x+y+z+t
t/x+z+t < t+y/x+y+z+t
=> M < 2x+2y+2z+2t/x+y+z+t = 2
Vậy 1 < M < 2
=> M ko phải là số tự nhiên
Tk mk nha
để viết được dưới dạng só thập phân hữu hạn
khi mẫu của phân số tối giản chỉ có ước nguyên tố là 2 và 5
vậy \(P=\frac{x}{3.5.x}\) có dạng số thập phân hữu hạn thì \(\hept{\begin{cases}x⋮3\\y\in\left\{2,5\right\}\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\text{ hoặc }y=5\end{cases}}}\)
b. ta có :\(Q=\frac{15x}{2.7y}\Rightarrow\hept{\begin{cases}x⋮7\\y\in\left\{2,5\right\}\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\y=2\text{ hoặc y=5}\end{cases}}}\)
Ta có:
Góc BOD + góc DOC = 1200
=> góc DOC = 1200 - góc BOD = 120o - 90o = 30o
Góc AOC + góc COB = 120o
=> góc COB = 120o - góc AOC= 120o - 90o = 300
mà Góc BOC + góc COD + góc DOA = 120o
=> góc COD = 120o - ( góc BOC + góc DOA) = 1200 - 600 = 600
Ta có:
Góc BOC = Góc AOD
=> 1/2 BOC = 1/2 AOD = 30/2 = 50
hay góc nOC = góc mOD = 15o
mà góc nOm= góc nOC +góc mOD + góc COD = 15o +150 +600 = 90o
hay nO vuông góc với mO.
k cho mình nha
B C A D E M N I H K
a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\) (Hai góc đối đỉnh)
Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)
Xét tam giác vuông BDM và CEN có:
BD = CE
\(\widehat{ECN}=\widehat{DBM}\) (cmt)
\(\Rightarrow\Delta BDM=\Delta CEN\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow BM=CN\) (Hai cạnh tương ứng)
b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)
Ta thấy MD và NE cùng vuông góc BC nên MD // NE
Suy ra \(\widehat{DMI}=\widehat{ENI}\) (Hai góc so le trong)
Xét tam giác vuông MDI và NEI có:
MD = NE
\(\widehat{DMI}=\widehat{ENI}\)
\(\Rightarrow\Delta MDI=\Delta NEI\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow MI=NI\)
Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.
c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\) (1) và BK = CK
Xét tam giác BMK và CNK có:
BM = CN (cma)
MK = NK (cmb)
BK = CK (cmt)
\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\) (2)
Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)
Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)
Vậy \(KC\perp AN\)
ta có: A+B+C=1800(tổng 3 góc tam giác) mà C=900(vuông ở C ) suy ra A+B=900 mà B=2A suy ra A+2A=900 suy ra A=300 suy ra B =600
a, vì DCA kề bù với C suy ra DCA +C=1800 mà C=900suy ra DCA=900 suy ra DCA=C
xét tam giác ADC và ACB: DCA=C, CD=CB, AC cạnh chung suy ra tam giác ADC = ACB suy ra DAC=CAB và AD=AB
b, xét tam giác AMC, ANC: DAC=CAB, AC cạnh chung, AM=AN suy ra tam giác AMC=ANC suy ra MC=CN
c,xét tam giác MAC,NAC: DAC=CAB, AI cạnh chung , AM=AN suy ra tam giác MAC=NAC suy ra AIM=AIN và IM=IN
d, vì AIM kề bù IAN suy ra AIM+IAN=1800 mà AIM=AIN suy ra AIN+AIN=1800 suy ra AIN=900
vì AIN=900 và C=900 suy ra MN //BD
Đặt \(d=\left(a+b+2,2a+b+1\right)\).
\(\Rightarrow a^2=\left(a+b+2\right)\left(2a+b+1\right)⋮d^2\)
\(\Rightarrow a⋮d\).
\(\left(2a+b+1\right)-\left(a+b+2\right)=a-1⋮d\Rightarrow1⋮d\).
Do đó \(d=1\).
Suy ra \(a+b+2,2a+b+1\)đồng thời là các số chính phương.
yuuyuuuuuuuuuuuuuuuuudr
uuuuuuuu7
rruurrrrrrrrrrrrrrrrr7\(x = {-b \pm \sqrt{b^2-4ac} \over r2a}ddd\)
r2.tt nha