Cho a, b, c > 0 và b là số nằm giữa a và c. Chứng minh rằng:
\(ab^2+bc^2+ca^2\ge3abc+\frac{3}{4}k\left(t-k\right)^2\) với \(k=min\left\{a,b,c\right\};t=max\left\{a,b,c\right\}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10, \(5x^3+11y^3=-13z^3\)
\(\Rightarrow5x^3+11y^3⋮13\)
\(\Rightarrow x,y⋮13\)
\(\Rightarrow z⋮13\)
Đến đây dùng lùi vô hạn nhé
4. Nếu em đã tìm hiểu về giai thừa thì ở bài 4, chúng ta có thêm điều kiện: x, y, z là số tự nhiên và x,y < z
+) TH1: x = 0; y = 0 => z = 2 (tm)
+) TH2: x = 0; y = 1=> z = 2(tm)
+) Th3: x= 1; y = 0 => z = 2(tm)
+) TH4: x = 1; y= 1 => z = 2 (tm)
+) TH5: y > 1
với \(x\le y\)
Khi đó: x! = 1.2.3...x;
y! = 1.2.3...x.(x+1)...y
z! = 1.2.3....x.(x+1)...y(y+1)...z
Từ (4) <=> 1 + (x+1).(x+2)...y = (x + 1)....y(y+1)...z
<=> ( x+1)(x+2)...y[(y+1)...z - 1 ] = 1
<=> \(\hept{\begin{cases}\left(x+1\right)\left(x+2\right)...y=1\\\left(y+1\right)...z-1=1\end{cases}}\)vô lí vì y > 1
Với \(y\le x\)cũng làm tương tự và loại'
Vậy:...
12 phút = 12/60 (giờ)=0,2 (giờ)
Gọi vận tốc ban đầu của xe là \(x\)(km/h), vận tốc đi trên đoạn đường xấu là \(x-10\) (km/h). (ĐK x>10)
Đoạn đường xấu là 1/4 quãng đường AB và băng \(240:4=60\) (km).
Theo bài ra ta có: \(\frac{60}{x-10}-\frac{60}{x}=0,2\)
=> \(0,2x^2-2x-600=0\)
=> \(x=60\) hoặc \(x=-50\)(loại)
Vận tốc ban đầu là 60km, vận tốc trên đoạn đường xấu là 60-10 = 50km/h
A B C x E D F I O
ED là đường trung bình của tam giác ABC nên ED = 1/2 BC
Vì ED là đường trung bình nên D là trung điểm của AC.
Tam giác DAE = tam giác DCF (Trường hợp GCG) => DE = DF.
BCFE là hình bình hành vì có 2 cặp cạnh đối song song.
=> BF cắt EC tại trung điểm O của mỗi đoạn.
Trong tam giác CEF có: CD và FO là trung tuyến => I là trọng tâm tam giác CEF.
=> CI = 2/3 CD
=> \(IC^2=\frac{4}{9}CD^2\) (1)
Ta có: \(IA.ID=\left(AD+ID\right).ID=\left(CD+\frac{1}{3}CD\right).\frac{1}{3}CD=\frac{4}{9}CD^2\) (2)
Từ (1) và (2) suy ra \(IC^2=ID.IA\)
b) Do I là trọng tâm tam giác CEF nên ID/IC = 1/2
\(ab^2+b+7⋮a^2b+a+b\Leftrightarrow a\left(ab^2+b+7\right)-b\left(a^2b+a+b\right)⋮a^2b+a+b\Leftrightarrow7a-b^2⋮a^2b+a+b\left(1\right)\)
\(+,7a=b^2\Rightarrow\left(a;b\right)=\left(7k^2;7k\right)\left(k\text{ nguyên dương}\right)\)
\(+,7a>b^2\text{ từ 1}\Rightarrow7a-b^2\ge a^2b+a+b\Leftrightarrow6a\ge a^2b+b+b^2\text{ mà: b là số nguyên dương}\Rightarrow b< 3\Leftrightarrow b\in\left\{1;2\right\}\)
làm tiếp
\(+,7a< b^2\text{ từ (1)}\Rightarrow b^2-7a\ge a^2b+a+b\Leftrightarrow voli\text{ :)}.Tự\text{ kết luận}\)
Xét hiệu \(S_1-S_2=\frac{a^2-b^2}{a+b}+\frac{b^2-c^2}{b+c}+\frac{c^2-a^2}{c+a}\)
\(=\frac{\left(a-b\right)\left(a+b\right)}{a+b}+\frac{\left(b-c\right)\left(b+c\right)}{b+c}+\frac{\left(c-a\right)\left(c+a\right)}{c+a}\)
\(=a-b+b-c+c-a\)
\(=0\)
\(\Rightarrow S_1=S_2\)
+) Áp dụng bđt AM-GM ta có:
\(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{a^2}{a+b}.\frac{a+b}{4}}=a\)
\(\frac{b^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{b^2}{b+c}.\frac{b+c}{4}}=b\)
\(\frac{c^2}{c+a}+\frac{c+a}{4}\ge2\sqrt{\frac{c^2}{c+a}.\frac{c+a}{4}}=c\)
Cộng theo vế các đẳng thức trên ta được:
\(S_1+\frac{a+b+c}{2}\ge a+b+c\)
\(\Rightarrow S_1\ge\frac{a+b+c}{2}\left(đpcm\right)\)
Câu hỏi của Tôi Là Ai - Toán lớp 8 - Học toán với OnlineMath
Câu hỏi của Tôi Là Ai - Toán lớp 8 - Học toán với OnlineMath
Chẳng có gì hay! Bài này chỉ hay khi nó là tìm Min (A đạt min là \(-\frac{446}{725}\) tại \(\left(x;y;z\right)=\left(-\frac{3}{4};-\frac{3}{4};\frac{5}{2}\right)\) và các hoán vị)
Cách 1:
Xét BĐT phụ: \(\frac{a}{a^2+1}\le\frac{18}{25}a+\frac{3}{50}\left(\text{với }a\ge-\frac{3}{4}\right)\)
\(\Leftrightarrow\frac{\left(4a+3\right)\left(3a-1\right)^2}{50\left(a^2+1\right)}\ge0\) đúng với mọi \(a\ge-\frac{3}{4}\)
Áp dụng: \(A\le\frac{18}{25}\left(x+y+z\right)+\frac{9}{50}=\frac{9}{10}\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)
Cách 2: (được suy ra từ cách trên)
Chú ý: \(\frac{a}{a^2+1}=\frac{18}{25}a+\frac{3}{50}-\frac{\left(4a+3\right)\left(3a-1\right)^2}{50\left(a^2+1\right)}\)
Từ đó viết được "SOS" (tại nó là sos của t chứ không phải sos chính thống của Phạm Kim Hùng:v)
A B C D I E M O N F
LẤY I LÀ TRUNG ĐIỂM CỦA BC, O LÀ TRUNG ĐIỂM CỦA AC
XÉT TAM GIÁC MAN VÀ TAM GIÁC IOF CÓ
OI = AB/2=AE/2=AM
OF=AN ( CÚNG LÀ ĐƯƠNG CAO CỦA TAM GIÁC ĐỀU)
GÓC FOI = GÓC MAN = 90 + GÓC A
=> TAM GIÁC MAN = TAM GIACC IOF ( C.G.C)
=> FI = DM
=> GÓC OFI = GÓC MNA
=> GÓC MND = GÓC ANC - GÓC MNA - GÓC DNC
= 90 - GÓC OFI - GÓC IFC
= 90 - 30 = 60
LẠI CÓ FI = ND/2
FI = MD
=> MD = ND/2
MÀ GÓC MND = 60
-> TAM GIÁC MND LÀ NỬ TAM GIÁC ĐỀU
=> DM VUÔNG GÓC DN
Ta có : \(\frac{bc}{\sqrt{3a+bc}}=\frac{bc}{\sqrt{\left(a+b+c\right)a+bc}}=\frac{bc}{\sqrt{a^2+ab+ac+bc}}=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
Áp dụng bđt Cauchy , ta có : \(\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{bc}{2}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)
Tương tự : \(\frac{ac}{\sqrt{3b+ac}}=\frac{ac}{\sqrt{\left(a+b\right)\left(b+c\right)}}\le\frac{ac}{2}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\); \(\frac{ab}{\sqrt{3c+ab}}=\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\frac{ab}{2}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)
\(\Rightarrow P=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{ac}{\sqrt{\left(b+a\right)\left(b+c\right)}}+\frac{ab}{\sqrt{\left(a+c\right)\left(c+b\right)}}\)
\(\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ac}{a+b}+\frac{ac}{b+c}\right)\)
\(\Rightarrow P\le\frac{1}{2}\left(\frac{ab+bc}{a+c}+\frac{ab+ac}{b+c}+\frac{bc+ac}{a+b}\right)=\frac{1}{2}\left(a+b+c\right)=\frac{3}{2}\)
Suy ra : Max P \(=\frac{3}{2}\Leftrightarrow a=b=c=1\)
đây nhé Câu hỏi của Steffy Han - Toán lớp 8 | Học trực tuyến
Hướng làm nè :
Giả sử : \(a=min,c=max\)
Thì : \(t=c,k=a\)
Ta đặt : \(b=a+x,c=a+y\left(x\le y\right)\)
Rồi thay vào BĐT cần chứng minh, phá tung ra là được :))
P/s : Mày ra đề làm dài khiếp á !!
ミ★ Đạt ★彡m làm rõ đi:)) Mà tao đoán cách của m phá ra xong m sẽ ko biết nhóm cho thích hợp đâu:P Cái điều kiện \(x\le y\) sẽ gây khó khăn cho m, cách tao khác.