Cho 2003 số nguyên dương sao cho 4 số bất kì trong chúng đều lập thành một tỉ lệ thức. CMR: trong các số đã cho luôn tồn tại ít nhất 501 số = nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A B C M N D E
QUA B KẺ BE SONG SONG VỚI NC
TRONG TAM GIÁC AMN CÓ ĐƯỜNG PHÂN GIÁC CỦA GÓC A ĐỒNG THỜI LÀ ĐƯỜNG CAO
=> TAM GIÁC AMN CÂN TẠI A
=> GÓC AMN = GÓC ANM
DO BE SONG SONG VỚI AC
=> GÓC BEM = GÓC ANM
MÀ GÓC ANM = GÓC AMN
=> GÓC AMN = GÓC BEM
=> BE = BM
TA DỄ DÀNG CHỨNG MINH ĐƯỢC TAM GIÁC DBE = TAM GIÁC DCN ( G.C.G)
=> BE = CN
=> BM = CN
TA CÓ AM = AN = X
BM = CN = Y
TA SẼ CÓ :
X + Y = AB = c
X - Y = AC = b
=> X = AM = \(\frac{b+c}{2}\)
=> Y = bm = \(\frac{c-b}{2}\)
( BM CÓ THỂ BẰNG b - c/ 2 phụ thuộc vào AB VÀ AC)
Hình tam giác TenDaGiac1: Polygon A, B, C Đoạn thẳng c: Đoạn thẳng [A, B] của Hình tam giác TenDaGiac1 Đoạn thẳng a: Đoạn thẳng [B, C] của Hình tam giác TenDaGiac1 Đoạn thẳng b: Đoạn thẳng [C, A] của Hình tam giác TenDaGiac1 Đoạn thẳng j: Đoạn thẳng [M, B] Đoạn thẳng k: Đoạn thẳng [M, N] Đoạn thẳng l: Đoạn thẳng [A, H] Đoạn thẳng n: Đoạn thẳng [B, K] A = (0.24, 5.9) A = (0.24, 5.9) A = (0.24, 5.9) B = (-1.84, 2.22) B = (-1.84, 2.22) B = (-1.84, 2.22) C = (6.84, 2) C = (6.84, 2) C = (6.84, 2) Điểm D: Trung điểm của a Điểm D: Trung điểm của a Điểm D: Trung điểm của a Điểm M: Giao điểm của h, i Điểm M: Giao điểm của h, i Điểm M: Giao điểm của h, i Điểm N: Giao điểm của h, b Điểm N: Giao điểm của h, b Điểm N: Giao điểm của h, b Điểm H: Giao điểm của g, k Điểm H: Giao điểm của g, k Điểm H: Giao điểm của g, k Điểm K: Giao điểm của m, k Điểm K: Giao điểm của m, k Điểm K: Giao điểm của m, k
Bài của Hiếu viết sai tên điểm. Cô trình bày bài này như sau:
Kẻ BK // AC ( K thuộc MN)
Đặt H là giao điểm của phân giác trong góc A và MN.
Khi đó ta dễ dàng chứng minh được \(\Delta BDK=\Delta CDN\left(g-c-g\right)\Rightarrow BK=CN\left(1\right)\)
Xét tam giác AMN có AH là phân giác đồng thời đường cao nên nó là tam giác cân hay \(\widehat{AMN}=\widehat{ANM}\)
Lại do BK // AC nên \(\widehat{ANM}=\widehat{BKM}\) (đồng vị)
Vậy \(\widehat{AMN}=\widehat{BKM}\) hay tam giác BKM cân tại B. Suy ra BM = BK (2)
Từ (1) và (2) suy ra BM = CN
Ta thấy AM = AB + BM = c + BM
AN = AC - NC = b - NC
Cộng từng vế ta có : AM + AN = b + c hay 2AM = b + c
Vậy \(AM=\frac{b+c}{2}\)
Khi đó MB = AM - AB \(=\frac{b+c}{2}-c=\frac{b-c}{2}\) ( Với trường hợp b > c và ngược lại)

\(\overline{abcd};\overline{dcba}\)là số tự nhiên có bốn chữ số
=> \(a,d\ne0\)
Và vì: \(4.\overline{abcd}=\overline{dcba}\)
=> a<3
TH1: a=1
Khi đó ta có: \(4.\overline{1bcd}=\overline{dcb1}\)
Loại vì không tồn tại số nhân với 4 được số tự nhiên tận cùng là 1
TH2: a=2
Khi đó ta có: \(4.\overline{2bcd}=\overline{dcb2}\)
=> d=3 hoặc d=8
+) Với d =3 ta có:
\(4.\overline{2bc3}=\overline{3cb2}\)loại ( vì 4.2=8>3)
+) Với d=8
ta có: \(4.\overline{2bc8}=\overline{8cb2}\)
<=> \(4.\left(2000+b.100+c.10+8\right)=8000+c.100+b.10+2\)
<=> \(390b-60c+30=0\)
<=> \(13b-2c+1=0\)
<=> \(c=\frac{13b+1}{2}\)
=> b=1 và c=7
Vậy số tự nhiên cần tìm là: 2178 và 4x2178=8712
Cô ơi e có cách giải mới mong cô xem qua
Số cần tìm có dạng \(\overline{abcd}\)
Ta có 4.\(\overline{abcd}=\overline{dcba}\Rightarrow\overline{dcba}⋮4\Rightarrow a\in\left\{0;1;4;6;8\right\}\)
Xét các trường hợp thấy \(a\in0\)và nếu \(a\ge4\)thì \(4.\overline{abcd}\ge4.4000>9999\ge\overline{dcba}\)
và a=2 =>\(\overline{abcd}=\overline{dcba}\ge4.2000=8000=>d\in\left\{8;9\right\}\)
Mà \(\overline{dcba}=4\overline{abcd}\Rightarrow4.d\)phải tận cùng bằng chữ số a.
Mặt khác :4.8=32;4.9=36=>d=8
Ta có \(\overline{dcba}=100.dc+ba=2.5.4.dc+ba⋮4\)
=>ba\(⋮\)4
Vì a\(⋮\)2 theo trên =>b\(\in\){1;3;5;7;9}
Xét các trường hợp của b
Nếu \(b\ge3\Rightarrow\overline{8cba}\ge4.2300=9200\)(vô lí )
Nếu b : 1=>\(\overline{8bc12}=4.\overline{2108}\)
=>8012+100c=4.2108+4.10.c
=>60c=420
=>c=420:60
=>c=7
Vậy \(\overline{abcd}=2178\)

Bài 1:
Áp dụng TCDTSBN có:
\(\frac{a1-1}{9}=\frac{a2-2}{8}=...=\frac{a9-9}{1}=\frac{a1-1+a2-2+...+a9-9}{9+8+...+1}=\frac{\left(a1+...+a9\right)-\left(1+2+...+9\right)}{45}=\frac{90-45}{45}=1\)
\(\Rightarrow\frac{a1-1}{9}=1\Rightarrow a1=10\)
\(\frac{a2-2}{8}=1\Rightarrow a2=10\)
.....
\(\frac{a9-9}{1}=1\Rightarrow a9=10\)
Vậy a1=a2=...=a9=10
2,
a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\Rightarrow\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)
=> x=6, y=8, z=10
b, \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\Rightarrow\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}=\frac{5z-25-3x+3-4y-12}{30-6-16}=\frac{\left(5x-3x-4y\right)-\left(25-3+12\right)}{8}=\frac{50-34}{8}=2\)
=> x-1/2 = 2 => x=5
y+3/4=2=>y=5
z-5/6=2=>z=17
Bài 1 : Giải
a1−19=a2−28=a3−37=...=a9−91a1−19=a2−28=a3−37=...=a9−91
Theo tính chất dãy tỉ số bằng nhau →a1−19=a2−28=a3−37=...=a9−91=a1−1+a2−2+a3−3+a4−4+...+a9−99+8+7+...+3+2+1=(a1+a2+a3+...+a9)−4545=90−4545=1→a1−19=a2−28=a3−37=...=a9−91=a1−1+a2−2+a3−3+a4−4+...+a9−99+8+7+...+3+2+1=(a1+a2+a3+...+a9)−4545=90−4545=1
a1−1=9→a1=10a2−2=8→a2=10a3−3=7→a3=10...a9−9=1→a9=10a1−1=9→a1=10a2−2=8→a2=10a3−3=7→a3=10...a9−9=1→a9=10
Vậy a1=a2=a3=...=a9=10

+) Để n lớn nhất => m lớn nhất
+) Để n thuộc N
=> \(\sqrt{m-174}\in N\)
\(\sqrt{m+34}\in N\)
Đặt m-174 =a^2 , m+34 =b^2 ( a, b thuộc N)
=> \(b^2-a^2=34+174=208\)
=> \(\left(b-a\right)\left(b+a\right)=208\) là số chẵn
=> b-a , b+a đồng thời là số chẵn và b+a>b-a
Vì n lớn nhất => a+b lớn nhất
Xét trường hợp:
TH: \(\hept{\begin{cases}b-a=2\\b+a=104\end{cases}\Leftrightarrow}\hept{\begin{cases}b=53\\a=51\end{cases}}\)thử lại thấy thỏa mãn với m=2775 thay vào tính được n=53+51=104
Vậy n=104

a. Do tam giác ABC cân có \(\widehat{BAC}=100^o\Rightarrow\widehat{ABC}=\widehat{ACB}=40^o\)
Từ đó cũng có \(\widehat{ACH}=\widehat{BCH}=20^o\)
Xét tam giác AHC ta thấy ngay \(\widehat{AHC}=180^o-\widehat{HAC}-\widehat{ACH}=60^o\)
Lấy I, J trên BC sao cho \(\widehat{CHI}=80^o;\widehat{CHJ}=60^o\)
Ta có \(\Delta HAC=\Delta HJC\left(g-c-g\right)\Rightarrow AH=HJ\)
\(\widehat{HJC}=\widehat{HAC}=100^o\Rightarrow\widehat{HJI}=80^o\)
Xét tam giác HIC có \(\widehat{HCI}=20^o;\widehat{CHI}=80^o\Rightarrow\widehat{HIC}=80^o\Rightarrow HC=IC\)
Xét tam giác HIJ có \(\widehat{HIJ}=\widehat{HJI}=80^o\Rightarrow HJ=HI\)
HIJ là góc ngoài tam giác BHI nên mà nó gấp đôi góc \(\widehat{HBI}\Rightarrow\) tam giác BHI cân tại I hay HI = BI.
Vậy thì BC = BI + IC = HI + HC = AH + HC (đpcm)
b.

Em làm cô vui lòng xem giúp em ạ
Có: \(x,y,z>0\)
Nên: \(7^y>1\)
Mà \(7^y+2^z=2^x+1\)(1)
\(\Leftrightarrow2^x>2^z\Rightarrow x>z\)
Xét TH1: y lẻ
Có: \(\left(1\right)\Leftrightarrow2^x-2^z=7^y-1\)
\(\Leftrightarrow2^z\left(2^{x-z}-1\right)=7^y-1\)
Có: y lẻ nên: \(7^y-1=\left(7-1\right)\cdot A=6A⋮6\)
\(\Leftrightarrow7^y-1\equiv2\)(mod 4)
Vì thế: \(2^z=2\)\(\Rightarrow z=1\)(vì với z>1 thì \(2^z\equiv0\)(mod 4)
Thay vào PT: \(2^x-2=7^y-1\)
\(\Leftrightarrow2^x=7^y+1\)
\(\Leftrightarrow2^x=\left(7+1\right)\left(7^{y-1}-7^{y-2}+...-7+1\right)\)
\(\Leftrightarrow2^x=8\left(7^{y-1}-7^{y-2}+...-7+1\right)=8B\)
Vì B lẻ nên: \(2^x=8\)\(\Rightarrow x=3\)\(\Rightarrow y=1\)
Được: \(\left(x;y;z\right)=\left(3;1;1\right)\)
TH2: Khi y chẵn:
\(2^z\left(2^{x-z}-1\right)=7^y-1\)
Vì y chẵn nên:
\(2^z\left(2^{x-z}-1\right)=\left(7+1\right)\left(7-1\right)C=48C=16\cdot3C\)
Vì: \(2^{x-z}-1\equiv1\)(mod 2)
Nên: \(2^z=16\Rightarrow z=4\)
Thế vào:
\(2^x+1=7^y+16\)
\(\Leftrightarrow2^x=7^y+15\)
\(\Leftrightarrow2^x=7^y+7+8\)
\(\Leftrightarrow2^x=7\left(7^{y-1}+1\right)+8\)
\(\Leftrightarrow2^x=7\cdot8\cdot\left(7^{y-2}-7^{y-3}+...-7+1\right)+8\)
\(\Leftrightarrow2^x=8\left(7^{y-1}-7^{y-2}+...-7^2+7+1\right)=8S\)
Vì S chia hết cho 8
nên: \(2^x=64P\Rightarrow2^x=64\Rightarrow x=6\)
\(\Rightarrow y=2\)
Vì thế: \(\left(x;y;z\right)=\left(6;2;4\right)\)
Vậy: \(\left(x;y;z\right)=\left(6;2;4\right);\left(3;1;1\right)\)

#)Giải :
Trong 12 số sẽ có 9 số lớn hơn 5
=> Luôn chia cho 3 dư 1 hoặc dư 2
Vậy trong 12 số luôn tồn tại a1 - a2 sao cho a1 - a2 chia hết cho 2
Và a3 - a4 : a5 - a6 sao cho a3 - a4 ; a5 - a6 chia hết cho 30
Do đó tích trên chia hết cho 2 . 30 . 30 = 1800
* Nguồn : Câu hỏi tương tự
Mk ghi cho bn đỡ ph vô đó thui :P
#~Will~be~Pens~#
Ta đã biết 3 số nguyên tố đầu tiên trong tập số nguyên tố là: 2, 3, 5
Do đó trong 12 số nguyên tố phân biệt bất kì luôn có ít nhất 9 số lớn hơn 5 và 9 số trên chia cho 3 dư 1 , 2.
=> Theo nguyên lí Dirichlet, tồn tại ít nhất 5 số nguyên tố đồng dư với nhau theo mod 3 ( nghĩa là tồn tại ít nhất 5 số có cùng số dư khi chia cho 3), 5 số trên không chia hết cho 5
=> Trong 5 số trên có ít nhất 2 số giả sử là a1 và a2 có cùng số dư khi chia cho 5 hay \(a_1\equiv a_2\left(mod5\right)\)
Và \(a_1\equiv a_2\left(mod3\right)\)
a1, a2 lẻ => \(a_1\equiv a_2\left(mod2\right)\)
mà (5, 2, 3) =1
=> \(a_1\equiv a_2\left(mod30\right)\Leftrightarrow a_1-a_2⋮30\)
Xét 7 số trong 9 số còn lại:
Theo nguyên lí Dirichlet tồn tại 4 đồng dư với nhau theo mod 3, Xét 4 số trên khi chia cho 5
TH1: tồn tại hai số a3, a4 sao cho : \(a_3\equiv a_4\left(mod5\right)\)
mặt khác tương tự như trên ta cũng có \(a_3\equiv a_4\left(mod30\right)\Leftrightarrow a_3-a_4⋮30\)
Lấy hai số bất kì a5, a6 trong 5 số còn lại, ta có: \(a_5+a_6⋮2\)
và 2.30.30=1800
Vậy \(\left(a_1-a_2\right)\left(a_3-a_4\right)\left(a_5+a_6\right)⋮1800\)
TH2: 4 số trên khi chia cho 5 có số dư lần lượt là 1, 2, 3, 4
G/s: \(a_5\equiv1\left(mod5\right);a_6\equiv4\left(mod5\right)\Rightarrow a_5+a_6\equiv5\left(mod5\right)\Rightarrow a_5+a_6⋮5\)
và a5, a6 lẻ \(\Rightarrow a_5+a_6⋮2\)
\(\Rightarrow a_5+a_6⋮10\)
Mặt khác : lấy hai số a3, a4 còn lại ta có: \(a_3\equiv a_4\left(mod3\right)\Rightarrow a_3-a_4⋮3\)
và a3, a4 lẻ => \(a_3-a_4⋮2\)
=> \(a_3-a_4⋮6\)
Ta có: 30.10.6=1800
vậy \(\left(a_1-a_2\right)\left(a_3-a_4\right)\left(a_5+a_6\right)⋮1800\)

Í em mới lớp 7 thôi hả
Vậy mà giỏi đến mức được làm công tác viên òi
Tức là chị là chị của công tác viên hí hí
~ lớp 8 ~
Lớp 7 nhưng chịu quá nhiều tai tiếng ạ,vs như lúc đó ko thuộc hằng đẳng thức bình phương của một tổng,làm xàm thế là...
Ta chứng minh trong 2003 số nguyên dương đã cho chỉ nhận nhiều nhất 4 giá tri khác nhau.
Thật vậy giả sử trong các số đã cho có nhiều hơn 4 chữ số khác nhau, giả sử \(a_1,a_2,a_3,a_4,a_5\)là 5 số khác nhau bất kì. Không mất tính tổng quát giả sử
\(a_1< a_2< a_3< a_4< a_5\)(1)
Theo đầu bài \(a_1a_2=a_3a_4\)(2)
Theo (1) không xảy ra \(a_1a_2=a_3a_4\)hoặc\(a_1a_3=a_2a_4.\)
Tương tự 4 số khác nhau \(a_1,a_2,a_3,a_5\)thì \(a_1a_5=a_2a_3\)(3).
Từ (2) và (3) suy ra \(a_4=a_5.\)Mâu thuẫn.
Vậy trong 2003 số nguyên dương đã cho không thể có hơn 4 số khác nhau. Mà 2003 = 4.500 + 3.
Do đó trong 2003 số tự nhiên dương đã cho luôn tìm được ít nhất 500 + 1 = 501 số bằng nhau.