K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2020

hải anh giải phương trình 2 nhé

Điều kiện xác định \(x\ge1\)

\(3\left(x^2-x+1\right)=\left(x+\sqrt{x-1}\right)^2\)

\(\Leftrightarrow3\left(x-\sqrt{x-1}\right)\left(x+\sqrt{x-1}\right)=\left(x+\sqrt{x-1}\right)^2\)

\(\Leftrightarrow\left(x+\sqrt{x-1}\right)\left(3x-3\sqrt{x-1}-x-\sqrt{x-1}\right)=0\)

\(\Leftrightarrow2\left(x+\sqrt{x-1}\right)\left(x-2\sqrt{x-1}\right)=0\)(vì x\(\ge\)1 nên \(x+\sqrt{x-1}\ne0\))

\(\Leftrightarrow x-1-2\sqrt{x-1}+1=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2=0\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x=2\)(thỏa mãn điều kiện xác định)

Vậy phương trình có nghiệm x=2

25 tháng 8 2020

ĐKXĐ : \(x\ge0\)

Đặt \(A=\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}\)

\(=2011\sqrt{x}-2+\frac{1}{\sqrt{x}}\)

\(=2011\sqrt{x}+\frac{1}{\sqrt{x}}-2\)

Áp dụng BĐT AM - GM cho hai số dương ta có :

\(2011\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{2011\sqrt{x}\cdot\frac{1}{\sqrt{x}}}=2\sqrt{2011}\)

Do đó : \(A\ge2\left(\sqrt{2011}-1\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2011}\)

Vậy \(A_{min}=2\left(\sqrt{2011}-1\right)\) khi \(x=\frac{1}{2011}\)

25 tháng 8 2020

\(ĐK:x>0\)

Xét biểu thức\(\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}=\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}-2\left(\sqrt{2011}-1\right)+2\left(\sqrt{2011}-1\right)\)\(=\frac{2011x-2\sqrt{x}+1-2\sqrt{2011x}+2\sqrt{x}}{\sqrt{x}}+2\left(\sqrt{2011}-1\right)\)\(=\frac{\left(\sqrt{2011x}-1\right)^2}{\sqrt{x}}+2\left(\sqrt{2011}-1\right)\ge2\left(\sqrt{2011}-1\right)\)

\(\Rightarrow\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}\ge2\left(\sqrt{2011}-1\right)\)

Đẳng thức xảy ra khi \(\sqrt{2011x}=1\Leftrightarrow2011x=1\Leftrightarrow x=\frac{1}{2011}\)

Vậy giá trị nhỏ nhất của biểu thức là \(2\left(\sqrt{2011}-1\right)\), đạt được khi \(x=\frac{1}{2011}\)

19 tháng 8 2020

Đặt \(a=x^3;b=y^3;c=z^3\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=1\end{cases}}\)và ta cần tìm GTLN của \(P=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\)

Áp dụng BĐT AM - GM, ta được: \(x.x.y\le\frac{x^3+x^3+y^3}{3}=\frac{2x^3+y^3}{3}\)(1) ; \(y.y.x\le\frac{y^3+y^3+x^3}{3}=\frac{2y^3+x^3}{3}\)(2)

Cộng theo vế của 2 BĐT (1) và (2), ta được: \(x^2y+xy^2\le x^3+y^3\)hay \(x^3+y^3\ge xy\left(x+y\right)\)

Kết hợp giả thiết xyz = 1 suy ra \(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y\right)+1}=\frac{1}{xy\left(x+y+z\right)}=\frac{z}{x+y+z}\)

Tương tự, ta có: \(\frac{1}{y^3+z^3+1}\le\frac{x}{x+y+z}\)\(\frac{1}{z^3+x^3+1}\le\frac{y}{x+y+z}\)

Cộng theo vế của 3 BĐT trên, ta được: \(P=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\le\frac{x+y+z}{x+y+z}=1\)

Đẳng thức xảy ra khi x = y = z = 1 hay a = b = c = 1