K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

Bài này tao kiên trì trong nháp lắm rồi, nhưng trên này tao không kiên trì nữa đâu :))

Tóm lại bài này của mày quy đồng cả hai vế lên Kết hợp với điều giả sử \(a\ge b\ge c\)

Nên có đpcm.

9 tháng 2 2020

Nguyễn Văn Đạt không cần giả sử nha

16 tháng 4 2020

Dùng Bất đẳng thức Cô sy cho mẫu số

16 tháng 4 2020

ta có 

\(a^4b^2\ge2\sqrt{a^4b^2}=2a^2b\)\(=>\frac{a}{a^4+b^2}\le\frac{a}{2a^2b}=\frac{1}{2ab}\)

tương tự ta có

\(\frac{b}{b^4+a^2}\le\frac{1}{2ab}\)

\(=>\frac{a}{a^4+b^2}+\frac{b}{b^4+a^2}\le\frac{1}{2ab}+\frac{1}{2ab}=\frac{1}{ab}\)

dấu = xảy ra khi \(\hept{\begin{cases}a^4=b^2\\a^2=b^4\end{cases}=>a^2=b^2=1}\)

16 tháng 4 2020

Bạn tham khảo các câu trả lời của mọi người tại đây:

Câu hỏi của zZz Cool Kid zZz - Toán lớp 8 - Học toán với OnlineMath

Và đây củng chính là Moldova TST 2005

16 tháng 4 2020

Một cách giải khác mình lấy được trên mạng

1 tháng 5 2020

Từ giả thiết ta có: (a+1)(b+1)(c+1) >=0 và (1-a)(1-b)(1-c) >=0

=> (a+1)(b+1)(c+1) +(1-a)(1-b)(1-c) >=0

Rút gọn ta có: -2((ab+bc+ca) =<2

Mặt khác (a+b+c)2=a2+b2+c2+2(ab+bc+ca)=0

=> a2+b2+c2=-2(ab+bc+ca)

=> a2+b2+c2 =<2

Dấu "=" xảy ra <=> a=0; b=1; c=-1

11 tháng 4 2020

Zới mọi \(x,y>0\), áp dụng BĐT AM-GM ta có 

\(x^2+y^2=\frac{2xy\left(x^2+y^2\right)}{2xy}\le\frac{\frac{\left(2xy+x^2+y^2\right)^2}{4}}{2xy}=\frac{\left(x+y\right)^4}{8xy}\)

sử dụng kết quả trên ta thu đc các kết quả sau

\(a^2+c^2\le\frac{\left(a+c\right)^4}{8ac}=\frac{\left(a+c\right)^4bd}{8abcd}\le\frac{\left(a+c\right)^4\left(b+d\right)^2}{32abcd}\)

\(b^2+d^2\le\frac{\left(b+d\right)^4}{8bd}=\frac{\left(b+d\right)^4ac}{8abcd}\le\frac{\left(b+d\right)^4\left(c+a\right)^2}{32abcd}\)

Như zậy ta chỉ còn cần CM đc

\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{cd}+\frac{1}{da}\ge\frac{\left(a+c\right)^2\left(b+d\right)^2\left[\left(a+c\right)^2+\left(b+d\right)^2\right]}{32abcd}\)

BĐT trên tương đương zới

\(\frac{\left(a+c\right)\left(b+d\right)}{abcd}\ge\frac{\left(a+c\right)^2\left(b+d\right)^2\left[\left(a+c\right)^2+\left(b+d\right)^2\right]}{32abcd}\)

hay 

\(\left(a+c\right)\left(b+d\right)\left[\left(a+c\right)^2+\left(b+d\right)^2\right]\le32\)

đến đây bạn lại sử dụng kết quả trên ta có ĐPCM nhá

Dễ thấy đẳng thức xảy ra khi a=b=c=d=1

11 tháng 4 2020

mình ko chắc nhá

16 tháng 9 2016


Triangle poly1: Polygon A, B, C Segment c: Segment [A, B] of Triangle poly1 Segment a: Segment [B, C] of Triangle poly1 Segment b: Segment [C, A] of Triangle poly1 Segment j: Segment [A, G] Segment k: Segment [B, H] Segment l: Segment [I, C] Segment n: Segment [H, G] Segment q: Segment [O, I] Segment r: Segment [O, G] Segment f_1: Segment [A, D] Segment g_1: Segment [O, K] Segment m: Segment [A, H] Segment p: Segment [B, G] Segment s: Segment [E, D] Segment h_1: Segment [H, O] A = (6.37, 4.19) A = (6.37, 4.19) A = (6.37, 4.19) B = (3.15, -2.53) B = (3.15, -2.53) B = (3.15, -2.53) C = (15.4, -3.36) C = (15.4, -3.36) C = (15.4, -3.36) Point F: Midpoint of c Point F: Midpoint of c Point F: Midpoint of c Point D: Midpoint of a Point D: Midpoint of a Point D: Midpoint of a Point E: Midpoint of b Point E: Midpoint of b Point E: Midpoint of b O = (10.6, -2.67) O = (10.6, -2.67) O = (10.6, -2.67) Point I: Intersection point of f, i Point I: Intersection point of f, i Point I: Intersection point of f, i Point G: Intersection point of d, g Point G: Intersection point of d, g Point G: Intersection point of d, g Point H: Intersection point of e, h Point H: Intersection point of e, h Point H: Intersection point of e, h Point K: Intersection point of j, k Point K: Intersection point of j, k Point K: Intersection point of j, k Point J: Intersection point of f_1, g_1 Point J: Intersection point of f_1, g_1 Point J: Intersection point of f_1, g_1

a) DE là đường trung bình tam giác ABC=>DE//AB và DE=\(\frac{1}{2}\)AB

DE là đường trung bình tam giác OGH=>DE//GH và DE=\(\frac{1}{2}\)GH

=> AB//GH và AB=GH => AHGB là hình bình hành => AG và BH cắt nhau tại trung điểm mỗi đường 

CM tương tự: AIGC là hình bình bình hành => AG,IC cắt nhau tại trung điểm mỗi đường 

                     IBCH là hình bình hành => IC,BH cắt nhau tại trung điểm mỗi đường

=> AG,BH,CI đồng quy.

b) K trung điểm AG => OK là trung tuyến tam giác AGO

Mà AD là trung tuyến tam giác AGO ( DG=DO do đối xứng tâm )

=> Giao điểm J của hai đường là trọng tâm tam giác AGO

=> JD =\(\frac{1}{3}\)AD

Mà AD là trung tuyến tam giác ABC

=> J là trọng tâm tam giác ABC

Vậy OK luôn đi qua điểm cố định là trọng tâm tam giác ABC.

16 tháng 9 2016

Lỡ vẽ hình bự quá rồi dán lên nhìn xấu ghê.

4 tháng 7 2017

a/ \(\frac{b}{b}.\sqrt{\frac{a^2+b^2}{2}}+\frac{c}{c}.\sqrt{\frac{b^2+c^2}{2}}+\frac{a}{a}.\sqrt{\frac{c^2+a^2}{2}}\)

\(\le\frac{1}{b}.\left(\frac{3b^2+a^2}{4}\right)+\frac{1}{c}.\left(\frac{3c^2+b^2}{4}\right)+\frac{1}{a}.\left(\frac{3a^2+c^2}{4}\right)\)

\(=\frac{1}{4}.\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{3}{4}.\left(a+b+c\right)\)

Ta cần chứng minh

\(\frac{1}{4}.\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{3}{4}.\left(a+b+c\right)\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)

\(\Leftrightarrow\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge\left(a+b+c\right)\)

Mà: \(\Leftrightarrow\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

Vậy có ĐPCM.

Câu b làm y chang.

2 tháng 7 2017

hình như sai đề

23 tháng 9 2019

\(P=\left(x+y\right)^3-3xy\left(x+y\right)+2x^2y^2\)

\(=2x^2y^2-3xy+1=2t^2-3t+\frac{5}{8}+\frac{3}{8}\) (đặt t = xy \(\Rightarrow t\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\))

\(=\frac{1}{8}\left(4t-1\right)\left(4t-5\right)+\frac{3}{8}\ge\frac{3}{8}\)

Do đó \(P\ge\frac{3}{8}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x+y=1\\t=\frac{1}{4}\\x=y\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)

True?

1 tháng 4 2020

Em không hiểu ctv giải dòng suy ra T ạ

Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.Bài 6. Cho tứ giác ABCD có hai đường chéo cắt...
Đọc tiếp

Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.

Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.

Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.

Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.

Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .

Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.

Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .

Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé. 

9
28 tháng 3 2020

A B C H M O G N

Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.

M là trung điểm của BC và HN nên BNCH là hình bình hành

\(\Rightarrow NC//BH\)

Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O ) 

Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)

M là trung điểm BC nên OM \(\perp\)BC

Xét \(\Delta AHG\)và \(\Delta OGM\)có :

\(\widehat{HAG}=\widehat{GMO}\)\(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)

\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng

28 tháng 3 2020

A B C D M N P Q E F T S

gọi E,F,T lần lượt là trung điểm của AB,CD,BD

Đường thẳng ME cắt NF tại S

Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )

Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)

Tương tự , \(NF\perp CD;\)\(TQ//CD\)

\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )

\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)

Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )

Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)

27 tháng 3 2020

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

27 tháng 3 2020

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)