\(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-z}=x+y+z\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1:
Ta có: -321<-320=-(32)10=-910
=>-321<-910(1)
-231<-230=-(23)10=-810
=>-231<-810(2)
mà 9>8 nên -910<-810 (3)
từ (1) ; (2) và (3) ta được:
-321<-231
Bài 2:
Ta có: 33334444=(3.1111)4444=34444.11114444=(34)1111.11114444=811111.11114444
44443333=(4.1111)3333=43333.11113333=(43)1111.11113333=641111.11113333
Vì 81>64 và 4444>3333 nên 811111.11114444>641111.11113333
hay 33334444>44443333

Ta đặt: \(\frac{a}{b}=a-b=m\) Vì a, b là só nguyên => a, b khác 0 và m là số nguyên khác 0
=> a = b.m
=> \(b.m-b=m\)
=> \(b=\frac{m}{m-1}=\frac{m-1+1}{m-1}=1+\frac{1}{m-1}\)
Để b là số nguyên => \(m-1=\pm1\)
+) m - 1 =-1 ( loại )
+) m-1 = =1 => m=2 , b=2 => a = 2.2 = 4.
vẬY a=4; b=2.
<br class="Apple-interchange-newline"><div></div>ab =a−b=m Vì a, b là só nguyên => a, b khác 0 và m là số nguyên khác 0
=> a = b.m
=> b.m−b=m
=> b=mm−1 =m−1+1m−1 =1+1m−1
Để b là số nguyên => m−1=±1
+) m - 1 =-1 ( loại )
+) m-1 = =1 => m=2 , b=2 => a = 2.2 = 4.
vẬY a=4; b=2.

Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 => xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình là các hoán vị của (1 ; 2 ; 3)
Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 => xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3)

Số p4 có 5 ước số tự nhiên là 1 , p, p2 , p3 , p4
Ta có : 1 + p + p2 + p3 + p4 = n2 (n \(\in\) N)
Suy ra : 4n2 = 4p4 + 4p3 + 4p2 + 4p + 4 > 4p4 + 4p3 + p2 = (2p2 + p)2
Và 4n2 < 4p4 + p2 + 4 + 4p3 + 8p2 + 4p = (2p2 + p + 2)2.
Vậy : (2p2 + p)2 < (2n)2 < (2p2 + p + 2)2.
Suy ra :(2n)2 = (2p2 + p + 2)2 = 4p4 + 4p3 +5p2 + 2p + 1
vậy 4p4 + 4p3 +5p2 + 2p + 1 = 4p4 + 4p3 +4p2 +4p + 4 (vì cùng bằng 4n2 )
=> p2 - 2p - 3 = 0 => (p + 1) (p - 3) = 0
do p > 1 => p - 3 = 0 => p = 3

I/ Kiến thức cần nhớ
- Công thức tính diện tích tam giác: S = a x h : 2
Trong đó: S là diện tích tam giác,
a là số đo của đáy (lấy đáy là một trong 3 canh của tam giác)
h là số đo chiều cao ứng với đáy (Chiều cao của tam giác là đoạn thẳng hạ từ đỉnh xuống đáy và vuông góc với đáy)
- Công thức liên quan: h = S x 2 : a ; a = S x 2 : h
II/ Các ví dụ
Ví dụ 1:
Cho tam giác ABC (như hình vẽ) có độ dài đáy BC = 16, diện tích tam giác là 200 cm2. Vẽ chiều cao AH và tính AH.
ABCH
Giải:
+) Đáy là BC thì chiều cao là đoạn thẳng xuất phát từ A và vuông góc với BC.
+) Áp dụng công thức tính chiều cao h = S x 2 : a.
Độ dài chiều cao AH là: 200 x 2 : 16 = 25 (cm)
Đáp số: 25 cm
Nhận xét :
- Không phải lúc nào chiều cao cũng nằm trong tam giác.
- Khi tính diện tích tam giác, cần lưu ý: Chiều cao nào thì phải ứng với đáy đó.(Trong ví dụ 1, đáy là BC thì chiều cao là AH).
-----------------------
Ví dụ 2:
Cho tam giác ABC có diện tích là 45 cm2. D là trung điểm của cạnh AB. Trên cạnh AC lấy điểm E sao cho AE gấp đôi EC. Tính diện tích tam giác AED.
Giải:
ABCHDE
Nối B với E. Vẽ EH vuông góc với AB.
Ta có
SABE = 12 x EH x AB
SADE = 12 x EH x AD
= 12 x EH x 12 x AB (vì AD = 12 x AB)
= 12 x SABE (1)
Tương tự, ta có: ABE và ABC là hai tam giác có chung chiều cao hạ từ đỉnh B mà đáy AE = 23 x AC
Suy ra: SABE = 23 x SABC (2) .
Từ (1) và (2) ta có SADE = 12 x 23 x SABC = 13 x 45 = 15 (cm2)
Đáp số : 15 cm2
Nhận xét:
- Ta có thể tính diện tích tam giác bằng cách tìm mối quan hệ giữa các tam giác.
+ Nếu hai tam giác có chung chiều cao (hoặc chiều cao bằng nhau) thì diện tích của chúng tỉ lệ với hai cạnh đáy .
+ Nếu hai tam giác có chung đáy (hoặc đáy bằng nhau) thì diện tích của chúng tỉ lệ với hai đường cao tương ứng.
- Lưu ý: Ưu tiên nối thêm hình và chọn đáy là những cạnh có chia tỉ lệ. (Ở ví dụ 2, ta cũng có thể nối D với C).
Câu hỏi của bggvf - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại link bên trên nhé.

xét n=0 => không thỏa mãn;n=1 => thỏa mãn;
xét n\(\ge2\)
với n là số chẵn thì
19n+1n=(19+1)(19n-1 - 19n-2 +... - 1)+ 2.1n = 20A + 2
18n +2n = (18+2)(18n-1- 18n-2.2 + 18n-3.22 - ... - 2n-1) + 2.2n = 20B +2.2n
=> để 20A +2 +20B+ 2.22n chia hết cho 5 thì 2.2n +2 chia hết cho 5 hay 2n +1 chia hết cho 5
n chẵn nên sẽ có dạng n= 2k (k\(\in N;k\ge1\)) => 2n +1 = 22k +1 = 4k +1
4k chỉ có chữ số tận cùng là 4 hoặc 6
với k chẵn thì 4k tận cùng là 6 nên 4k +1 không chia hết cho 5 (loại)
với k lẻ; k có dạng k = 2x+1 (\(x\in N;x\ge0\)) thì 4k tận cùng là 4 nên 4k +1 tận cùng là 5 ( thỏa mãn chia hết cho 5) => n = 2k =2(2x+ 1) = 4x + 2 (x\(\in N;x\ge0\)) thỏa mãn
xét n là số lẻ; n =2k +1 (k\(\in Z;k\ge1\)) thì 19n+1n + 18n + 2n = (19+1)(19n-1- 19n-2 +...+ 1) + (18+2)(18n-1 - 18n-2.2 +...+ 2n-1)
=20U +20V chia hết cho 5
vậy với mọi n là số lẻ hoặc n = 4x +2(x \(\in N;x\ge1\)) đều thỏa mãn
+) 18 chia 5 dư 3
=> \(18^n;3^n\) có cùng số dư khi chia cho 5.
+) 19 chia 5 dư 4
=> \(19^n;4^n\)có cùng số dư khi chia cho 5
=> \(1^n+2^n+18^n+19^n\)chia hết cho 5 khi và chỉ khi \(1^n+2^n+3^n+4^n\) chia hết cho 5
+) Chúng ta đi tìm n bằng cách quy nạp:
Với n = 0 ta có: \(1^0+2^0+3^0+4^0=4⋮̸5\)
Với n = 1 ta có: \(1^1+2^1+3^1+4^1=10⋮5\)
Với n = 2 ta có: \(1^2+2^2+3^2+4^2=30⋮5\)
Với n = 3 ta có: \(1^3+2^3+3^3+4^3=100⋮5\)
Với n = 4 ta có: \(1^4+2^4+3^4+4^4=354⋮̸5\)
Với n = 5 ta có: \(1^5+2^5+3^3+4^3=1300⋮5\)
...
Từ điều trên chúng ta có nhận xét rằng, Các số n không chia hết cho 4 thì \(1^n+2^n+3^n+4^n\)chia hết cho 5.
+) Chứng minh: Xét n với 4 dạng : n = 4k; n= 4k+1 ; n= 4k+2; n= 4k +3 ( với k là số tự nhiên)
(i) Với n = 4k ta có:
Vì \(1^k\)chia 5 dư 1; \(16^k\)chia 5 dư 1; \(81^k\)chia 5 dư 1; \(256^k\)chia 5 dư 1
\(1^{4k}+2^{4k}+3^{4k}+4^{4k}=1^k+16^k+81^k+256^k\)
=> n =4k thì \(1^n+2^n+3^n+4^n\)không chia hết cho 5.
(ii) Với n = 4k + 1ta có:
Vì \(1^k\)chia 5 dư 1; \(16^k.2\)chia 5 dư 2; \(81^k.3\)chia 5 dư 3; \(256^k.4\) chia 5 dư 4.
=> \(1^{4k+1}+2^{4k+1}+3^{4k+1}+4^{4k+1}=1^k+16^k.2+81^k.3+256^k.4\) chia 5 dư 10 => chia hết 5
=> n =4k +1 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5.
(iii) Với n = 4k + 2 ta có:
Vì \(1^k\)chia 5 dư 1; \(16^k.4\)chia 5 dư 4; \(81^k.9\)chia 5 dư 4; \(256^k.16\) chia 5 dư 1.
=> \(1^{4k+2}+2^{4k+2}+3^{4k+2}+4^{4k+2}=1^k+16^k.4+81^k.9+256^k.16\) chia 5 dư 10 => chia hết cho 5
=> n =4k +2 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5.
(iv) Với n = 4k + 3ta có:
Vì \(1^k\)chia 5 dư 1; \(16^k.8\)chia 5 dư 3; \(81^k.27\)chia 5 dư 2 ; \(256^k.64\) chia 5 dư 4.
=> \(1^{4k+1}+2^{4k+3}+3^{4k+3}+4^{4k+3}=1^k+16^k.8+81^k.27+256^k.64\) chia cho 5 dư 10 => chia hết cho 5
=> n =4k +3 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5.
=> n không chia hết cho 4 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5.
Vậy suy ra \(1^n+2^n+18^n+19^n\) chia hết cho 5 khi n không chia hết cho 4.
Tích của abc, bca, cab là một số có 9 chữ số mà chữ số tận cùng là 9, chữ số đầu tiên là 2. Tìm abc.

Theo đề bài ta có phương trình : \(\overline{abc}\cdot\overline{bca}\cdot\overline{cab}=\overline{2defghij9}=x\left(a,b,c,d,e,f,g,h,i,j,x\inℕ\right)\)
Ta có \(\overline{abc}\cdot\overline{bca}\cdot\overline{cab}=\overline{2defghij9}\) do chữ số tận cùng của tích \(ca\) (đặt là \(y\)) khi nhân với \(b\) thì có chữ số tận cùng là 9 (áp dụng phép đặt tính và nhân lần lượt các thừa số \(\overline{abc},\overline{bca},\overline{cab}\)). Vậy có 2 trường hợp xảy ra.
TH1 : \(yb=9=1\cdot1\cdot9=1\cdot3\cdot3\)
TH1a : \(a=1,b=1,c=9\Rightarrow x=119\cdot191\cdot911=20706119\)(không thỏa mãn yêu cầu đề bài vậy do \(x\) có 8 chữ số vậy TH1a vô lí)
TH1b : \(a=1,b=3,c=3\Rightarrow x=133\cdot331\cdot313=1379199\)(không thỏa mãn yêu cầu đề bài vậy do \(x\) có 7 chữ số vậy TH1b vô lí)
TH2 : \(yb=49=1\cdot7\cdot7\Rightarrow\overline{abc}=177\Rightarrow x=177\cdot771\cdot717=97846839\)
(không thỏa mãn yêu cầu đề bài vậy do \(x\) có 8 chữ số vậy TH2 vô lí)
Vậy \(\overline{abc}\in\left\{\varnothing\right\}\)

A C B D F I G H K L 1 2 3 4 1 2 E 1 2 1
Lấy điểm L sao cho A là trung điểm LB thì 2 tam giác vuông\(\Delta CAL=\Delta CAB\left(2cgv\right)\)
=> CL = CB mà BC = 2AB ; LB = 2AB nên BC = LB => CL = LB = CB =>\(\Delta CLB\) đều\(\Rightarrow\widehat{ABC}=60^0\)
\(\Delta ABC\)vuông tại A có\(\widehat{ACB}=90^0-\widehat{ABC}=30^0\Rightarrow\widehat{C_2}=\frac{30^0}{3}=10^0\Rightarrow\widehat{C_3}=20^0\)
Ta chứng minh được 2 cặp tam giác vuông\(\Delta CKH=\Delta CKF\left(2cgv\right);\Delta CIF=\Delta CIG\left(2cgv\right)\)
=> CH = CG (1)(vì CH = CF ; CF = CG) ;\(\widehat{C_1}=\widehat{C_2};\widehat{C_3}=\widehat{C_4}\)
\(\Rightarrow\widehat{HCG}=\widehat{C_1}+\widehat{C_2}+\widehat{C_3}+\widehat{C_4}=2\left(\widehat{C_2}+\widehat{C_3}\right)=2\widehat{ACB}=60^0\)(2)
Từ (1) và (2),ta có\(\Delta HCG\)đều nên\(\widehat{G_1}=60^0\)
\(\Delta FCG\)cân tại C (CF = CG) có\(\widehat{FCG}=\widehat{C_3}+\widehat{C_4}=2\widehat{C_3}=40^0\Rightarrow\widehat{FGC}=\frac{180^0-40^0}{2}=70^0\)
\(\Rightarrow\widehat{G_2}=\widehat{CGF}-\widehat{G_1}=70^0-60^0=10^0\)
\(\widehat{B_1}=\frac{\widehat{ABC}}{3}=20^0\Rightarrow\widehat{B_2}=\widehat{ABC}-\widehat{B_1}=40^0\)
\(\widehat{DFG}=\widehat{I_1}+\widehat{B_2}=90^0+40^0=130^0\)(\(\widehat{DFG}\)là góc ngoài\(\Delta FIB\)).\(\Delta DFG\)có :
\(\widehat{FDG}=180^0-\widehat{DFG}-\widehat{G_2}=180^0-130^0-10^0=40^0\)
\(\Delta ADB\)vuông tại A có\(\widehat{ADB}=90^0-\widehat{B_1}=70^0\).
Ta chứng minh được 2 tam giác vuông\(\Delta DKH=\Delta DKF\left(2cgv\right)\)nên\(\widehat{HDK}=\widehat{ADB}\)
\(\Rightarrow\widehat{HDG}=\widehat{HDK}+\widehat{ADB}+\widehat{FDG}=70^0+70^0+40^0=180^0\)
Vậy H,D,G thẳng hàng
Áp dụng dãy tí số bằng nhau ta có:
\(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-z}=\frac{x+y+z}{2x+2y+z+2}\)
=> \(\frac{x+y+z}{2x+2y+z+2}=x+y+z\)
=> \(2x+2y+z+2=1\)(1)
=> \(\hept{\begin{cases}y+z+1=-y-2x\\x+z+1=-x-2y\end{cases}}\)
=> \(\frac{x}{-y-2x}=\frac{y}{-x-2y}=\frac{x+y}{-3x-3y}=-\frac{1}{3}\)
=> \(3x=y+2x\Rightarrow x=y\)
Thế vào (1) => \(z=-1-4x\)
KHi đó ta có:
\(x+y+z=2x+z=-\frac{1}{3}\)
=> \(2x-1-4x=-\frac{1}{3}\)=> \(x=-\frac{1}{3}\)=> y = -1/3 => z =-1-4.(-1/3) =1/3