K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2020

ĐỀ BÀI THIẾU \(\widehat{BAC}=105^0\). Hình vẽ trong TKHĐ

Qua A kẻ đường thẳng vuông góc với AC cắt BC tại M. Tại E kẻ đường thẳng song song với AH cắt AC tại D.

Xét tam giác ABE có AB=BE=1 mà ^ABE=600 nên tam giác ABE đều. Khi đó 

\(AH=AB\cdot\sin\widehat{ABH}=\sin60^0=\frac{\sqrt{3}}{2}\)

Dễ thấy \(\Delta MAE=\Delta ADE\left(g.c.g\right)\Rightarrow AD=AM\Rightarrow\Delta\)AMC vuông tại A có đường cao AH theo hệ thức lượng:

\(\frac{1}{AC^2}+\frac{1}{AM^2}=\frac{1}{AH^2}\Rightarrow\frac{1}{AC^2}+\frac{1}{AD^2}=\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^2}=\frac{4}{3}\)

26 tháng 8 2020

Gọi F đối xứng với C qua A. Khi đó tam giác FBC vuông tại F.

Theo hệ thức lượng thì \(BC^2=HC\cdot CF\). Mặt khác \(BC^2=2AB\cdot HC\)

Đến đây dễ rồi nha, làm tiếp thì chán quá :(

26 tháng 8 2020

ĐKXĐ: \(x>0\)

Ta có: \(P\sqrt{x}=\left(\sqrt{x}+1\right)^2\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)^2=6\sqrt{x}-3-\sqrt{x-4}\)

\(\Leftrightarrow x+2\sqrt{x}+1=6\sqrt{x}-3-\sqrt{x-4}\)

\(\Leftrightarrow x-4\sqrt{x}+4+\sqrt{x-4}=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\sqrt{x-4}=0\)

Vì \(\left(\sqrt{x}-2\right)^2\ge0;\sqrt{x-4}\ge0\forall x\)

\(\Rightarrow\left(\sqrt{x}-2\right)^2+\sqrt{x-4}\ge0\forall x\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x}-2=0\\\sqrt{x-4}=0\end{cases}}\Leftrightarrow x=4\) ( tm )

Vậy...

26 tháng 8 2020

Ta có : 

\(\frac{4ab+1}{4ab}=1+\frac{1}{4ab}\ge1+\frac{1}{\left(a+b\right)^2}\)

\(\Rightarrow\frac{4ab}{4ab+1}\le\frac{1}{1+\frac{1}{\left(a+b\right)^2}}\)

Tương tự ta được : 

\(\frac{4bc}{4bc+1}\le\frac{1}{1+\frac{1}{\left(b+c\right)^2}};\frac{4ca}{4ca+1}\le\frac{1}{1+\frac{1}{\left(c+a\right)^2}}\)

\(\Rightarrow VP\le\frac{1}{1+\frac{1}{\left(a+b\right)^2}}+\frac{1}{1+\frac{1}{\left(b+c\right)^2}}+\frac{1}{1+\frac{1}{\left(c+a\right)^2}}\)

BĐT cần chứng minh tương đương với 

\(a+b+c\ge\frac{1}{1+\frac{1}{\left(a+b\right)^2}}+\frac{1}{1+\frac{1}{\left(b+c\right)^2}}+\frac{1}{1+\frac{1}{\left(c+a\right)^2}}\) (1)

Đặt \(a+b=x;b+c=y;c+a=z\)

\(x,y,z>0;x+y+z=2\left(a+b+c\right)\)

\(\Rightarrow\left(1\right)\Leftrightarrow x+y+z\ge2\left(\frac{1}{1+\frac{1}{x^2}}+\frac{1}{1+\frac{1}{y^2}}+\frac{1}{1+\frac{1}{z^2}}\right)\)

\(VP=\frac{2x^2}{x^2+1}+\frac{2y^2}{y^2+1}+\frac{2z^2}{z^2+1}\le\frac{2x^2}{2x}+\frac{2y^2}{2y}+\frac{2z^2}{2z}=x+y+z=VT\)

Vậy BĐT được chứng minh

Dấu "=" xảy ra khi \(x=y=z=1\Leftrightarrow a=b=c=\frac{1}{2}\)

27 tháng 8 2020

\(\frac{4ab}{4ab+1}< =\frac{4ab}{2\sqrt{4ab}}=\sqrt{ab}\)

CMTT =>\(\hept{\begin{cases}\frac{4bc}{4bc+1}< =\sqrt{bc}\\\frac{4ac}{4ac+1}< =\sqrt{ac}\end{cases}}\)

Ta có \(a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ac}\)

=\(\frac{1}{2}\left(\left(a+2\sqrt{ab}+b\right)+\left(b+2\sqrt{bc}+c\right)+\left(c+2\sqrt{ac}+a\right)\right)\)

=\(\frac{1}{2}\left(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\right)>=0\)

dấu = xảy ra khi a=b=c.

\(=>a+b+c>=\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)\(>=\frac{4ab}{4ab+1}+\frac{4bc}{4bc+1}+\frac{4ac}{4ac+1}\)

25 tháng 8 2020

Từ giả thiết a+b+c=1 suy ra: c=1-a-b, thay vào bất đẳng thức ta được

(3a+4b+5-5a-5b)2\(\ge\)44ab+44(a+b)(1-a-b)

<=> 48a2+16(3b-4)a+45b2-54b+25\(\ge0\)

Xét \(f\left(a\right)=48a^2+16\left(3b-4\right)a+45b^2-54b+25\), khi đó ta được

\(\Delta'=64\left(3b-4\right)^2-48\left(45b^2-54b+25\right)=-176\left(3b^2-1\right)\le0\)

Do đó suy ra: f(a) \(\ge\)0 hay 48a2+16(3a-4)a+45b2-54b+25\(\ge\)0

Dấu "=" xảy ra khi và chỉ khi \(a=\frac{1}{2};b=\frac{1}{3};c=\frac{1}{6}\)

25 tháng 8 2020

Đặt \(\sqrt{a^2-1}=x;\sqrt{b^2-1}=y;\sqrt{c^2-1}=z\)ta viết lại thành x2+y2+z2=1.Bất đẳng thức cần chứng minh tương đương với

\(\left(x+y+z\right)\left(\frac{1}{\sqrt{x^2+1}}+\frac{1}{\sqrt{y^2+1}}+\frac{1}{\sqrt{z^2+1}}\right)\le\frac{9}{2}\)

Theo bất đẳng thức Cauchy-Schwarz ta có

\(\frac{x}{\sqrt{x^2+1}}+\frac{y}{\sqrt{y^2+1}}+\frac{z}{\sqrt{z^2+1}}\le\sqrt{\Sigma\frac{3x^2}{2x^2+y^2+z^2}}\le\sqrt{\frac{3}{4}\Sigma\left(\frac{x^2}{x^2+y^2}+\frac{x^2}{x^2+z^2}\right)}=\frac{3}{2}\)

\(\Leftrightarrow\)\( {\displaystyle \displaystyle \sum } \)\(\frac{y+z}{\sqrt{x^2+1}}\le\sqrt{\Sigma\frac{3\left(y+z\right)^2}{2x^2+y^2+z^2}}\le\sqrt{3\Sigma\left(\frac{y^2}{x^2+y^2}+\frac{z^2}{x^2+z^2}\right)}=3\)

Dấu đẳng thức xảy ra khi \(a=b=c=\frac{2}{\sqrt{3}}\)

25 tháng 8 2020

Dễ dàng dự đoán được dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)Nhận thấy các đại lượng trong căn và mẫu đồng chưa bậc nên suy nghĩ đầu tiên là đồng bậc. Để ý đến giả thiết a+b+c=1 ta thấy \(a^2+abc=a^2\left(a+b+c\right)+abc=a\left(a+b\right)\left(a+c\right)\)

\(c+ab=a\left(a+b+c\right)+ab=\left(a+c\right)\left(b+c\right)\)

Hoàn toàn tương tự ta có \(b^2+abc=b\left(b+a\right)\left(b+c\right);c^2+abc=c\left(c+b\right)\left(c+a\right)\)

\(b+ac=\left(a+b\right)\left(b+c\right);a+bc=\left(a+b\right)\left(b+c\right)\)

Khi đó bất đẳng thức cần chứng minh trở thành

\(\frac{\sqrt{a\left(a+b\right)\left(a+c\right)}}{\left(a+c\right)\left(b+c\right)}+\frac{\sqrt{b\left(b+c\right)\left(b+a\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{\sqrt{c\left(c+a\right)\left(c+b\right)}}{\left(b+a\right)\left(b+c\right)}\le\frac{1}{2\sqrt{abc}}\)

hay \(\frac{a\sqrt{bc\left(a+b\right)\left(a+c\right)}}{\left(a+c\right)\left(c+b\right)}+\frac{b\sqrt{ab\left(b+c\right)\left(a+b\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{c\sqrt{ab\left(a+b\right)\left(b+c\right)}}{\left(c+b\right)\left(b+a\right)}\le\frac{1}{2\sqrt{abc}}\)

Quan sát bất đẳng thức trên ta liên tưởng đến bất đẳng thức Cauchy, để ý là

\(bc\left(a+b\right)\left(a+c\right)=c\left(a+b\right)\cdot b\left(a+c\right)=b\left(a+b\right)\cdot c\left(a+c\right)\)

Trong 2 cách viết trên ta chọn cách viết thứ nhất vì khi sử dụng bất đẳng thức Cauchy dạng \(2\sqrt{xy}\le x+y\)thì không tạo ra các đại lượng có chứa các bình phương. Khi đó áp dụng bất đẳng thức Cauchy ta được

\(\sqrt{bc\left(a+b\right)\left(a+c\right)}\le\frac{b\left(a+c\right)+c\left(a+b\right)}{2}=\frac{ab+2bc+ca}{2}\)

Áp dụng tương tự ta được

  \(\frac{a\sqrt{bc\left(a+b\right)\left(a+c\right)}}{\left(c+a\right)\left(c+b\right)}+\frac{b\sqrt{ac\left(b+c\right)\left(a+b\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{c\sqrt{ab\left(a+c\right)\left(b+c\right)}}{\left(b+c\right)\left(b+a\right)}\)\(\le\frac{a\left(ab+2bc+ca\right)}{2\left(c+a\right)\left(c+b\right)}+\frac{b\left(ab+bc+2ac\right)}{2\left(a+b\right)\left(a+c\right)}+\frac{c\left(2ab+bc+ca\right)}{2\left(b+c\right)\left(b+a\right)}\)

Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{a\left(ab+2bc+ca\right)}{2\left(c+a\right)\left(c+b\right)}+\frac{b\left(ab+bc+2ac\right)}{2\left(a+b\right)\left(a+c\right)}+\frac{c\left(2ab+bc+ca\right)}{2\left(b+c\right)\left(b+a\right)}\le1\)

hay \(a\left(ab+2bc+ca\right)\left(a+b\right)+b\left(b+c\right)\left(ab+bc+2ca\right)+c\left(c+b\right)\left(2ab+bc+ca\right)\)\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Vế trái của bất đẳng thức là bậc bốn còn vế phải là bậc ba nên ta có thể đồng bậc là

\(a\left(ab+2bc+ca\right)+b\left(b+c\right)\left(ab+bc+2ac\right)+c\left(c+b\right)\left(2ab+bc+ca\right)\)

\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a+b+c\right)\)

Triển khai và thu gọn ta được \(a^3\left(b+c\right)+b^3\left(c+a\right)+c^3\left(a+b\right)+a^2b^2+b^2c^2+c^2a^2+5\left(a^2bc+ab^2c+abc^2\right)\)

\(\le a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)+4\left(a^2bc+ba^2c+abc^2\right)\)

hay \(abc\left(a+b+c\right)\le a^2b^2+b^2c^2+c^2a^2\), đây là một đánh giá đúng

Dấu đẳng thức xảy ra tại \(a=b=c=\frac{1}{3}\)

26 tháng 8 2020

Làm đi làm lại nhiều rồi chán không muốn viết nữa vô TKHĐ xem hình ảnh

Hình ảnh có thể có: văn bản

27 tháng 8 2020

Theo giả thiết ta có \(\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\Leftrightarrow\frac{x+y}{xy}=\frac{1}{z}\Leftrightarrow xz+yz=xy\)

\(\Leftrightarrow xy-xz-yz=0\Leftrightarrow x^2+y^2+z^2+xy-xz-yz=x^2+y^2+z^2\)

\(\Leftrightarrow\left(x+y-z\right)^2=x^2+y^2+z^2\)

\(\Leftrightarrow\sqrt{x^2+y^2+z^2}=\left|x+y-z\right|\)

Mà x, y, z là các số hữu tỉ nên \(\left|x+y-z\right|\)là số hữu tỉ

Vậy \(\sqrt{x^2+y^2+z^2}\)là số hữu tỉ (đpcm)