K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

Giả sử x là số hữu tỷ thì ta có

\(x=\frac{m}{n}\left(\left(m,n\right)=1\right)\)

\(\Rightarrow x-\frac{1}{x}=\frac{m}{n}-\frac{n}{m}=\frac{m^2-n^2}{mn}\)

Vì \(x-\frac{1}{x}\)là số nguyên nên m2 - n2 \(⋮\)m

\(\Rightarrow\)n2 \(⋮\)

Mà n,m nguyên tố cùng nhau nên

m = \(\pm\)1

Tương tự ta cũng có

n =\(\pm\)1

\(\Rightarrow\)x = \(\pm\)1

Trái giả thuyết.

Vậy x phải là số vô tỷ.

Ta có: \(2x-\left(x-\frac{1}{x}\right)=x+\frac{1}{x}\)

\(\Rightarrow x+\frac{1}{x}\)là số vô tỷ.

Ta có: \(\left(x+\frac{1}{x}\right)^2=\left(x-\frac{1}{x}\right)^2+4\)nên là số nguyên

\(\Rightarrow\left(x+\frac{1}{x}\right)^{2n}\)là số hữu tỷ.

Mà \(x+\frac{1}{x}\)là số vô tỷ nên

\(\left(x+\frac{1}{x}\right)^{2n+1}=\left(x+\frac{1}{x}\right)\left(x+\frac{1}{x}\right)^{2n}\)

là số vô tỷ

2 tháng 10 2016

A B C D N M x K H

Hình vẽ không được đẹp cho lắm :))

Từ kẻ đường thẳng tạo với cạnh AD một góc bằng 15 độ, cắt cạnh CD tại K. Từ đó dễ dàng suy ra góc KAN = 90 độ

Từ A lại kẻ đường thẳng vuông góc với CD tại H.

Xét tam giác AKD và tam giác AMB có AB = AD , góc BAM = góc KAD = 15 độ , góc ABM = góc ADK

=> tam giác AKD = tam giác AMB (g.c.g) => AM = AK

Áp dụng hệ thức về cạnh trong tam giác vuông, ta có : \(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{1}{AK^2}+\frac{1}{AN^2}=\frac{1}{AH^2}\)

Mà : \(AH=sin\widehat{ADH}.AD=sin60^o.AB=\frac{\sqrt{3}}{2}AB\)

\(\Rightarrow\frac{1}{AH^2}=\frac{4}{3AB^2}\)

Vậy \(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{4}{3AB^2}\)

4 tháng 9 2020

BH/CH=(BH.BC)/(CH.BC)

áp dụng hệ thưcs lượng trong tam giác vuông

BH.BC= AB^2

CH.BC=AC^2

Suy ra BH/CH=AB^2/AC^2

4 tháng 9 2020

hello bạn

17 tháng 6 2019

12. Ta có \(ab\le\frac{a^2+b^2}{2}\)

=> \(a^2-ab+3b^2+1\ge\frac{a^2}{2}+\frac{5}{2}b^2+1\)

Lại có \(\left(\frac{a^2}{2}+\frac{5}{2}b^2+1\right)\left(\frac{1}{2}+\frac{5}{2}+1\right)\ge\left(\frac{a}{2}+\frac{5}{2}b+1\right)^2\)

=> \(\sqrt{a^2-ab+3b^2+1}\ge\frac{a}{4}+\frac{5b}{4}+\frac{1}{2}\)

=> \(\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{4}{a+b+b+b+b+b+1+1}\le\frac{4}{64}.\left(\frac{1}{a}+\frac{5}{b}+2\right)\)

Khi đó 

\(P\le\frac{1}{16}\left(6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+6\right)\le\frac{3}{2}\)

Dấu bằng xảy ra khi a=b=c=1

Vậy \(MaxP=\frac{3}{2}\)khi a=b=c=1

17 tháng 6 2019

13.  Ta có \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)( BĐT cosi)

=> \(1\ge\frac{9}{a+b+c+3}\)

=> \(a+b+c\ge6\)

Ta có \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

=> \(\frac{a^3-b^3}{a^2+ab+b^2}=a-b\)

Tương tự \(\frac{b^3-c^3}{b^2+bc+c^2}=b-c\),,\(\frac{c^3-a^2}{c^2+ac+a^2}=c-a\)

Cộng 3 BT trên ta có

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+c^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{c^2+bc+b^2}+\frac{a^3}{a^2+ac+c^2}\)

Khi đó \(2P=\frac{a^3+b^3}{a^2+ab+b^2}+...\)

=> \(2P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}+....\)

Xét \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)

<=> \(3\left(a^2-ab+b^2\right)\ge a^2+ab+b^2\)

<=> \(a^2+b^2\ge2ab\)(luôn đúng )

=> \(2P\ge\frac{1}{3}\left(a+b+b+c+a+c\right)=\frac{2}{3}.\left(a+b+c\right)\ge4\)

=> \(P\ge2\)

Vậy \(MinP=2\)khi a=b=c=2

Lưu ý : Chỗ .... là tương tự 

3 tháng 9 2020

a) đk: \(x\ge0;x\ne1\)

b) \(A=\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right)\div\frac{\sqrt{x}-1}{2}\)

\(A=\frac{x+2+\left(\sqrt{x}-1\right)\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\div\frac{\sqrt{x}-1}{2}\)

\(A=\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\frac{2}{\sqrt{x}-1}\)

\(A=\frac{2\left(x-2\sqrt{x}+1\right)}{\left(x-2\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}\)

\(A=\frac{2}{x+\sqrt{x}+1}\)

3 tháng 9 2020

c) Ta có: \(x+\sqrt{x}+1=\left(x+\sqrt{x}+\frac{1}{4}\right)+\frac{3}{4}=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\) 

=> \(\frac{2}{x+\sqrt{x}+1}>0\left(\forall x\ne1\right)\)

d) Ta chỉ có thể tìm GTLN thôi

Để A đạt GTLN => \(x+\sqrt{x}+1\) phải đạt GTNN

Dấu "=" xảy ra khi: \(x=0\)

Vậy Max(A) = 2 khi x = 0

3 tháng 9 2020

a) \(3x+21-32x=-169\)

\(\Leftrightarrow-29x+21=-169\)

\(\Leftrightarrow-29x=\left(-169\right)-21\)

\(\Leftrightarrow-29x=-190\)

\(\Leftrightarrow x=\left(-190\right):\left(-29\right)\)

\(\Leftrightarrow x=\frac{190}{29}\)

Vậy tập hợp nghiệm của phương trình là: \(S=\left\{\frac{190}{29}\right\}.\)

b) \(3x-x+19-x=24\)

\(\Leftrightarrow2x+19-x=24\)

\(\Leftrightarrow x+19=24\)

\(\Leftrightarrow x=24-19\)

\(\Leftrightarrow x=5\)

Vậy tập hợp nghiệm của phương trình là:  \(S=\left\{5\right\}.\)

3 tháng 9 2020

a) 3x + 21 - 32x = -169

<=> -29x + 21 = -169

<=> -29x = -190

<=> x = 190/29

b) 3x - x + 19 - x = 24

<=> x + 19 = 24

<=> x = 5

c)  \(\hept{\begin{cases}28x+6y=7400\left(1\right)\\x+y=1500\left(2\right)\end{cases}}\)

Nhân 6 vào từng vế của (2)

=> \(\hept{\begin{cases}28x+6y=7400\\6x+6y=9000\left(3\right)\end{cases}}\)

Lấy (1) trừ (3) theo vế

=> 22x = -1600 => x = -800/11

Thế x = -800/11 vào (2)

=> -800/11 + y = 1500 => y = 17300/11

Vậy x = -800/11 ; y = 17300/11

Đề mình tổng hợp cho các bạn thi hsg toán 9.+) Yêu cầu:Thứ nhất: Các bạn trả lời phải ghi rõ bài của mình làm là bài mấy ý mấy?Ví dụ: Bài 1: Giải:....Thứ hai: Bài được chọn là bài làm đúng nhất và nhanh nhất. Nếu cách khác chậm hơn vẫn được chọn.+) Giải thưởng: Quản lí cam kết tài trợ GP: Số lượng mỗi ý đúng là 1 GP . Tổng số GP tài trợ là > 12Đề bài: Câu 1:a)...
Đọc tiếp

Đề mình tổng hợp cho các bạn thi hsg toán 9.

+) Yêu cầu:

Thứ nhất: Các bạn trả lời phải ghi rõ bài của mình làm là bài mấy ý mấy?

Ví dụ: Bài 1: Giải:....

Thứ hai: Bài được chọn là bài làm đúng nhất và nhanh nhất. Nếu cách khác chậm hơn vẫn được chọn.

+) Giải thưởng: Quản lí cam kết tài trợ GP: Số lượng mỗi ý đúng là 1 GP . Tổng số GP tài trợ là > 12

Đề bài: 

Câu 1:

a) Cho \(x=1+\sqrt[3]{2}+\sqrt[3]{4}\). Tính giá trị của biểu thức: \(A=x^5-4x^4+x^3-x^2-2x+2019\)

b) Cho \(x=\sqrt[3]{2+2\sqrt{3}}+\sqrt[3]{2-2\sqrt{3}}-1\). Tính giá trị biểu thức \(P=x^3\left(x^2+3x+9\right)^3\)

Câu 2:

a) Giải phương trình \(\frac{\left(x-4\right)\sqrt{x-2}-1}{\sqrt{4-x}+x-5}=\frac{2+\left(2x-4\right)\sqrt{x-2}}{x-1}\)

b) Giải hệ phương trình \(\hept{\begin{cases}\sqrt{x+1}+\sqrt{x+2}+\sqrt{x+3}=\sqrt{y-1}+\sqrt{y-2}+\sqrt{y-3}\\x^2+y^2=10\end{cases}}\)

Câu 3:

a) Cho hai đa thức \(f\left(x\right)=\frac{1}{x}+\frac{1}{x-2}+\frac{1}{x-4}+...+\frac{1}{x-2018}\)và \(g\left(x\right)=\frac{1}{x-1}+\frac{1}{x-3}+\frac{1}{x-5}+...+\frac{1}{x-2017}\)

Chứng minh rằng :\(\left|f\left(x\right)-g\left(x\right)\right|>2\)với x là các số nguyên thỏa mãn 0 < x < 2018

b) Cho m, n là hai số nguyên dương lẻ sao cho \(n^2-1\)chia hết cho \(\left|m^2-n^2+1\right|\). Chứng minh rằng \(\left|m^2-n^2+1\right|\)là số chính phương

c) Tìm nghiệm nguyên dương của phương trình \(x\left(x+3\right)+y\left(y+3\right)=z\left(z+3\right)\)với điều kiện x, y là các số nguyên tố

d) Chứng minh rằng phương trình \(x^{15}+y^{15}+z^{15}=19^{2003}+7^{2003}+9^{2003}\)không có nghiệm nguyên

Câu 4:

a) Cho điểm A cố định thuộc trên đường tròn (O; R). BC là dây cung của đường tròn (O; R), BC di động và tam giác ABC nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Tiếp tuyến tại B, C của đường tròn (O) cắt nhau ở G. Gọi S là giao điểm của GD và EF. Chứng minh rằng đường thẳng SH luôn đi qua một điểm cố định.

b) Cho tam giác ABC vuông tại C, D là chân đường cao vẽ từ C. Cho X là điểm bất kì thuộc đoạn thẳng CD (X khác C và D). Cho K là điểm trên đoạn thẳng AX sao cho BK = BC. Tương tự L là điểm trên đoạn thẳng BX sao cho AL = AC. Cho M là giao điểm của AL và BK. Chứng minh rằng MK = ML

Câu 5:

a)  Cho a, b, c là các số thực dương thỏa mãn điều kiện a + b + c = 3. Chứng minh rằng:\(8\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+9\ge10\left(a^2+b^2+c^2\right)\)

b) Cho tập hợp X = {0;1;2;...;14}. Gọi A là một tập hợp gồm 6 phần tử được lấy ra từ X. Chứng minh rằng trong các tập hợp con thực sự của A luôn tìm được hai tập có tổng các phần tử bằng nhau . (Tập hợp con thực sự của tập Y là tập con của Y khác tập rỗng và khác Y)

P/s: Đề bài tổng hợp có gì sai sót mong các bạn góp ý  và bổ sung  không cãi nhau; spam gây mất trật tự. 

12
1 tháng 9 2020

Góp ý của anh là câu hình em chọn những câu mà có các ý nhỏ hơn để gợi ý cho các ý khác em nha =))

sol nhẹ vài bài

\(x\left(x+3\right)+y\left(y+3\right)=z\left(z+3\right)\)

\(\Leftrightarrow x\left(x+3\right)=\left(z-y\right)\left(z+y+3\right)\) 

Khi đó \(z-y⋮x;z+y+3⋮x\)

Nếu \(z-y⋮x\Rightarrow z-y\ge x\Rightarrow z+y+3\ge x+2y+3>x+3\) 

Trường hợp này loại

Khi đó \(z+y+3⋮x\) Đặt \(z+y+3=kx\Rightarrow x\left(x+3\right)=\left(z-y\right)kx\Rightarrow x+3=k\left(z-y\right)\)

Mặt khác \(\left(x+y\right)\left(x+y+3\right)=x\left(x+3\right)+y\left(y+3\right)+2xy>z\left(z+3\right)\)

\(\Rightarrow z< x+y\)

Giả sử rằng \(x\ge y\) Mà \(z\left(z+3\right)>x\left(x+3\right)\Rightarrow z>x>y\) mặt khác \(kx>z>x\Rightarrow k>1\)

Ta có:\(kx< \left(x+y\right)+y+3=x+2y+3\le3x+3< 4x\Rightarrow k< 4\Rightarrow k\in\left\{2;3\right\}\)

Xét \(k=2\Rightarrow z+y+3=2x\Rightarrow z=2x-y-3\) và  \(x\left(x+3\right)=\left(z-y\right)2x\Leftrightarrow x+3=2z-2y\)

\(\Leftrightarrow x+3=4x-2y-6-2y\Leftrightarrow4y=3x-3\Rightarrow y⋮3\Rightarrow y=3\) tự tìm x;z

\(k=3\Rightarrow z+y+3=3x\Rightarrow z=3x-y-3\) và \(x\left(x+3\right)=\left(z-y\right)3x\Leftrightarrow x+3=3z-3y\Leftrightarrow x+3=3\left(3x-y-3\right)-3y\)

\(\Leftrightarrow x+3=9x-3y-9-3y\Leftrightarrow8x-12=6y\Leftrightarrow4x-4=3y\Rightarrow y=2\Rightarrow x=\frac{5}{2}\left(loai\right)\)

Vậy.............

1 tháng 9 2020

Bài 1 : Giải :

a) Ta có : \(x=1+\sqrt[3]{2}+\sqrt[3]{4}\)

\(\Rightarrow x.\left(1-\sqrt[3]{2}\right)=\left(1-\sqrt[3]{2}\right)\left(1+\sqrt[3]{2}.1+\sqrt[3]{2^2}\right)\)

\(\Rightarrow x-x\sqrt[3]{2}=1^3-\left(\sqrt[3]{2}\right)^3=-1\)

\(\Rightarrow x+1=x\sqrt[3]{2}\)

\(\Rightarrow\left(x+1\right)^3=2x^3\)

\(\Rightarrow x^3-3x^2-3x-1=0\)

Khi đó ta có : \(A=x^5-4x^4+x^3-x^2-2x+2019\)

\(=x^5-3x^4-3x^3-x^2-x^4+3x^3+3x^2+x+x^3-3x^2-3x-1+2020\)

\(=x^2.\left(x^3-3x^2-3x-1\right)-x.\left(x^3-3x^2-3x-1\right)+\left(x^3-3x^2-3x-1\right)+2020\)

\(=2020\)

P/s : Tạm thời xí câu này đã tối về xí tiếp nha :))

1 tháng 5 2024

Bạn làm được bài này chưa ạ

31 tháng 8 2020

nếu mình lấy x1 + x2 x 

thì rA kết quả

1 tháng 9 2020

MIK LẤY x+1+x2 x

thì ra đáp án

25 tháng 8 2020

\(\sqrt{x^2+2014}-x=\sqrt{y^2+2014}+y\Leftrightarrow x+y=\sqrt{x^2+2014}-\sqrt{y^2+2014}\)\(\Leftrightarrow x+y=\frac{x^2-y^2}{\sqrt{x^2+2014}+\sqrt{y^2+2014}}\)

\(\Leftrightarrow\left(x+y\right)\left(1-\frac{x-y}{\sqrt{x^2+2014}+\sqrt{y^2+2014}}\right)=0\)\(\Leftrightarrow\left(x+y\right)\frac{\sqrt{x^2+2014}-x+\sqrt{y^2+2014}+y}{\sqrt{x^2+2014}+\sqrt{y^2+2014}}=0\)(*)

Ta có: \(\hept{\begin{cases}\sqrt{x^2+2014}>\sqrt{x^2}=\left|x\right|\ge x\\\sqrt{y^2+2014}>\sqrt{y^2}=\left|y\right|\ge-y\end{cases}}\Rightarrow\hept{\begin{cases}\sqrt{x^2+2014}-x>0\\\sqrt{y^2+2014}+y>0\end{cases}}\)nên \(\frac{\sqrt{x^2+2014}-x+\sqrt{y^2+2014}+y}{\sqrt{x^2+2014}+\sqrt{y^2+2014}}>0\)(**)

Từ (*) và (**) suy ra x + y = 0

Vậy x + y = 0