Cho tam giác ABC có BC = a, các đường trung tuyến BD, CE. Lấy các điểm M, N trên cạnh BC sao cho BM = MN = NC. Gọi I là giao điểm của AM và BD, K là giao điểm
của AN và CE.
a) Chứng minh: EM // AN và 2EM = AN.
b) Chứng minh: DN // AM và 2DN = AM.
c) Chứng minh tứ giác BEDC là hình thang.
d) Chứng minh I là trung điểm của BD, K là trung điểm của EC.
e) Tính độ dài IK theo a.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(4x-5y-6xy-7=0\)
\(\Leftrightarrow12x-15y-18xy-21=0\)
\(\Leftrightarrow\left(12x-18xy\right)-15y-21=0\)
\(\Leftrightarrow6x.\left(2-3y\right)+5.\left(2-3y\right)-31=0\)
\(\Leftrightarrow\left(2-3y\right)\left(6x+5\right)=31\)
Do \(x,y\inℤ\Rightarrow\hept{\begin{cases}2-3y\inℤ\\6x+5\inℤ\end{cases}}\)
Nên \(2-3y,6x+5\) là cặp ước của \(31\).
Ta có bảng sau :
\(2-3y\) | \(-1\) | \(1\) | \(-31\) | \(31\) |
\(y\) | \(1\) | \(\frac{1}{3}\) | \(11\) | \(-\frac{29}{3}\) |
\(6x+5\) | \(-31\) | \(31\) | \(-1\) | \(1\) |
\(x\) | \(-6\) | \(\frac{13}{3}\) | \(-1\) | \(-\frac{2}{3}\) |
Đánh giá | Chọn | Loại | Chọn | Loại |
Vậy \(\left(x,y\right)\in\left\{\left(-6,1\right);\left(-1,11\right)\right\}\) thỏa mãn đề.

a) (2x-5)y+2y-10=0 <=> 2xy-3y = 10 <=> y(2x-3)=10 <=> y=\(\frac{10}{2x-3}\) với y là số nguyên
=> 2x-3 là ước của 10
ta có bảng sau
2x-3 | 10 | 5 | 2 | 1 | -1 | -2 | -5 | -10 |
x | Loại | 4 | Loại | 2 | 1 | Loại | -1 | Loại |
y | 2 | 10 | -10 | -2 |
b)
3xy + 21x-y-11=0 <=> y(3x-1)=-(21x-11) <=> -y=\(\frac{21x-11}{3x-1}\) =\(\frac{7\left(3x-1\right)-4}{3x-1}\)=7-\(\frac{4}{3x-1}\)với -y nguyên nên 3x-1 là ước của 4
3x-1 | 4 | 2 | 1 | -1 | -2 | -4 |
x | Loại | 1 | Loại | 0 | Loại | -1 |
y | -5 | -11 | -8 |
a) ( 2x - 5 )y + 2y - 10 = 0
<=> 2xy - 5y + 2y - 10 = 0
<=> 2xy - 3y - 10 = 0
<=> y( 2x - 3 ) - 10 = 0
<=> y( 2x - 3 ) = 10
Ta có bảng sau :
2x-3 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
x | 2 | 1 | 2,5 | 0,5 | 4 | -1 | 6,5 | -3,5 |
y | 10 | -10 | 5 | -5 | 2 | -2 | 1 | -1 |
Vì x , y nguyên nên các cặp ( x ; y ) = { ( 2 ; 10 ) , ( 1 ; -10 ) , ( 4 ; 2 ) , ( -1 ; -2 ) }
b) 3xy + 21x - y - 11 = 0
<=> 3x( y + 7 ) - 1( y + 7 ) - 4 = 0
<=> ( 3x - 1 )( y + 7 ) - 4 = 0
<=> ( 3x - 1 )( y + 7 ) = 4
Ta có bảng sau :
3x-1 | 1 | -1 | 2 | -2 | 4 | -4 |
y+7 | 4 | -4 | 2 | -2 | 1 | -1 |
x | 2/3 | 0 | 1 | -1/3 | 5/3 | -1 |
y | -3 | -11 | -5 | -9 | -6 | -8 |
Vì x, y nguyên nên các cặp ( x ; y ) = { ( 0 ; -11 ) , ( 1 ; -5 ) , ( -1 ; -8 ) }


Đặt \(A=x^2+15y^2+xy+8x+y+2020\)
\(\Rightarrow4A=4x^2+60y^2+4xy+32x+4y+8080\)
\(=\left(4x^2+4xy+y^2\right)+59y^2+32x+4y+8080\)
\(=\left(2x+y\right)^2+16.\left(2x+y\right)+64+59y^2+4y-16y+8016\)
\(=\left(2x+y+8\right)^2+59y^2-12y+8016\)
\(=\left(2x+y+8\right)^2+59\cdot\left(y^2-\frac{59}{12}y\right)+8016\)
\(=\left(2x+y+8\right)^2+59\cdot\left(y^2-2\cdot y\cdot\frac{59}{24}+\frac{59^2}{24^2}-\frac{59^2}{24^2}\right)+8016\)
\(=\left(2x+y+8\right)^2+59\cdot\left(y-\frac{59}{24}\right)^2+7659,439236\ge7659,439236\)
\(\Rightarrow A\ge1914,859809\)
Dấu "=" xảy ra \(\Leftrightarrow y=\frac{59}{14};x=-\frac{171}{28}\)
P/s : Bài này hơi xấu .....
Đặt \(A=x^2+15y^2+xy+8x+y+2020\)
Ta có: \(A=x^2+x\left(y+8\right)+15y^2+y+2020=\left(x^2+x\left(y+8\right)+\frac{\left(y+8\right)^2}{4}\right)\)\(+\left(15y^2+y-\frac{\left(y+8\right)^2}{4}\right)+2020=\left(x+\frac{y+8}{2}\right)^2+\frac{59y^2-12y-64}{4}+2020\)\(=\left(x+\frac{y+8}{2}\right)^2+\frac{59\left(y-\frac{6}{59}\right)^2-\frac{3812}{59}}{4}+2020\ge\frac{\frac{-3812}{59}}{4}+2020=\frac{118227}{59}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}y-\frac{6}{59}=0\\x=-\frac{y+8}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-239}{59}\\y=\frac{6}{59}\end{cases}}\)

Ta có:
\(A=\frac{\left(1^4+4\right)\left(2^4+4\right)...\left(2021^4+4\right)}{2}\)
\(=\frac{\left(1^4+4\right)\left(2^4+4\right)}{2}\cdot\left(3^4+4\right)\left(4^4+4\right)...\left(2021^4+4\right)\)
\(=5^2\cdot\left[2\cdot\left(3^4+4\right)\left(4^4+4\right)...\left(2021^4+4\right)\right]\)
Đặt \(2\cdot\left(3^4+4\right)\left(4^4+4\right)...\left(2021^4+4\right)=c\)
Từ công thức: \(a^x\cdot b^x=\left(ab\right)^x\left(a,b,x\inℤ\right)\Rightarrow a^2\cdot b^2=\left(ab\right)^2\)
\(\Rightarrow\)Nếu \(c\) là số chính phương thì \(5^2\cdot\left[2\cdot\left(3^4+4\right)\left(4^4+4\right)...\left(2021^4+4\right)\right]\) là số chính phương.
Có thể thấy các thừa số của tích \(c\) mà có dạng \(\left(2d\right)^4+4\left(d\inℕ\right)\) thì chia hết cho \(2^2\).
Phân tích các thừa số của tích \(c\) ra thừa số nguyên tố. Ta có:
\(c=2\cdot\left(...\right)\left(2^2\cdot5\cdot13\right)\left(...\right)\left(2^2\cdot5^2\cdot13\right)...\left(2020^4+4=2^2\cdot...\right)\left(2021^4+4=...\cdot...\right)\)
Gộp các thừa số \(2^2\) lại thành tích ta có:
\(c=\left(2^2\right)^{\frac{\left(2021-3+1\right)-1}{2}}\cdot2\cdot e\)
\(=\left(2^2\right)^{1009}\cdot2\cdot e\)
\(=\left(2^{1009}\right)^2\cdot2\cdot e\) (trong đó ký hiệu \(e\) là tích của các thừa số nguyên tố còn lại trong dãy \(\left(3^4+4\right)\left(4^4+4\right)...\left(2021^4+4\right)\) sau khi 1009 thừa số \(2^2\) bị tách ra.
Có thể thấy tích \(e\) gồm các thừa số nguyên tố lớn hơn 2\(\Rightarrow2e\) không thể là số chính phương.
\(\Rightarrow\left(2^{1009}\right)^2\cdot2\cdot e\) không phải là số chính phương\(\Rightarrow c\) không phải là số chính phương.
\(\Rightarrow A\) không phải là số chính phương (đpcm).

( 4x - 1 )3 + ( 3 - 4x )( 9 + 12x + 16x2 ) = ( 8x - 1 )( 8x + 1 ) - ( 3x - 5 )
<=> 64x3 - 48x2 + 12x - 1 + [ 33 - ( 4x )3 ] = ( 8x )2 - 12 - 3x + 5
<=> 64x3 - 48x2 + 12x - 1 + 27 - 64x3 = 64x2 - 1 - 3x + 5
<=> 64x3 - 48x2 + 12x - 64x3 - 64x2 + 3x = -1 + 5 + 1 - 27
<=> -112x2 + 15x = -22
<=> -112x2 + 15x + 22 = 0 (*) ( lại phải xài Delta :(( )
\(\Delta=b^2-4ac=15^2-4\cdot\left(-112\right)\cdot22=225+9856=10081\)
\(\Delta>0\)nên (*) có hai nghiệm phân biệt
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-15+\sqrt{10081}}{-224}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-15-\sqrt{10081}}{-224}\end{cases}}\)
Nghiệm xấu quá -..-