Cho biểu thức: \(A=\left(\frac{6x+4}{3\sqrt{3x^3}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^3}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Rút gọn biểu thức A; b) Tìm \(x\in Z\)để \(A\in Z\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải:
Gọi lãi suất cho vay là x (%), x > 0
Tiền lãi sau một năm là: 2 000 000 . x / 100 hay 20000x (đồng)
Sau 1 năm cả vốn lẫn lãi sẽ là: 2 000 000 + 20000x (đồng)
Tiền lãi riêng năm thứ hai phải chịu là:
(2 000 000 + 20000x) x/100 hay 20000x + 200x2
Số tiền sau hai năm bác Thời phải trả là:
2 000 000 + 40000x + 200x2
Theo đầu bài ra ta có phương trình:
2 000 000 + 40 000x + 200x2 = 2 420 000 hay x2 + 200x - 2 100 = 0
Giải phương trình:
∆' = 1002 - 1 . (-2 100) = 10 000 + 2 100 = 12 100 => √∆' = 110
nên x1 = -100 - 110 / 1 = -210, x2 = - 100 + 110 / 1 = 10
Vì x > 0 nên x1 không thỏa mãn điều kiện của ẩn.
Trả lời: lãi suất là 10%.
Dễ !
Gọi lãi suất cho vay là : x ( x > 0 )
Lãi suất sau năm đầu tiên là : 2 000 000 . x
Số tiền mà bác phải trả sau năm đầu tiên là :
2 000 000 + 2 000 000x = 2 000 000 ( 1 + x )
Số tiền trên được tính theo vốn của năm thứ 2
Số tiền lãi của năm thứ 2 là :
2 000 000 . ( 1 + x )x
Số tiền vốn và lãi phải trả sau năm thứ 2 là :
2 000 000 . ( 1 + x ) + 2 000 000 ( 1 + x ) x = 2 000 000 ( 1 + x )2
Trang trước
Trang sau
Bài 8: Giải bài toán bằng cách lập phương trình
Video Bài 42 trang 58 SGK Toán 9 Tập 2 - Cô Ngô Hoàng Ngọc Hà (Giáo viên VietJack)
Bài 42 (trang 58 SGK Toán 9 Tập 2): Bác Thời vay 2 000 000 đồng của ngân hàng để làm kinh tế gia đình trong thời hạn một năm. Lẽ ra cuối năm bác phải trả cả vốn lẫn lãi. Song bác đã được ngân hàng cho kéo dài thời hạn thêm một năm nữa, số lãi của năm đầu được gộp vào với vốn để tính lãi năm sau và lãi suất vẫn như cũ. Hết hai năm bác phải trả tất cả là 2 420 000 đồng. Hỏi lãi suất cho vay là bao nhiêu phần trăm trong một năm?
Lời giải
Gọi lãi suất cho vay là : x (x > 0).
Lãi suất sau năm đầu tiên là : 2 000 000.x
Số tiền bác phải trả sau năm đầu tiên là :
2 000 000 + 2 000 000. x = 2 000 000.(1 + x)
Số tiền trên được tính là vốn của năm thứ hai.
Số tiền lãi của năm thứ hai là : 2 000 000.(1 + x).x
Số tiền vốn và lãi phải trả sau năm thứ hai là:
2 000 000.(1 + x) + 2 000 000.(1 + x). x = 2 000 000.(1 + x)2
Theo đề bài ta có phương trình :
2 000 000 . ( 1 + x )2 = 2 420 000
<=> ( 1 + x )2 = 1,21
<=> 1 + x = 1,1 ( Vì 1 + x > 0 )
<=> x = 0,1 = 10%
Vậy lãi suất ngân hàng là 10% / năm
a) Ta có: \(\sqrt{16-6\sqrt{7}}+\sqrt{7}\)
\(=\sqrt{3^2-2.3.\sqrt{7}+7}+\sqrt{7}\)
\(=\sqrt{\left(3-\sqrt{7}\right)^2}+\sqrt{7}\)
\(=\left|3-\sqrt{7}\right|+\sqrt{7}\)
\(=3-\sqrt{7}+\sqrt{7}\)
\(=3\)
b) Ta có: \(\sqrt{\left|12\sqrt{5}-29\right|}+\sqrt{12\sqrt{5}+29}\)
\(=\sqrt{\left(\sqrt{29-12\sqrt{5}}+\sqrt{12\sqrt{5}+29}\right)^2}\)
\(=\sqrt{29-12\sqrt{5}+2\sqrt{\left(29-12\sqrt{5}\right)\left(12\sqrt{5}+29\right)}+12\sqrt{5}+29}\)
\(=\sqrt{58+2\sqrt{121}}\)
\(=\sqrt{58+2.11}\)
\(=\sqrt{80}=4\sqrt{5}\)
Gọi x (km/h) là vận tốc của xe thứ nhất. Điều kiện x > 0.
Khi đó vận tốc của xe lửa thứ hai là x + 5 (km/h).
Thời gian xe lửa thứ nhất đi từ Hà Nội đến chỗ gặp nhau là: \(\frac{450}{x}\) (giờ)
Thời gian xe lửa thứ hai đi từ Bình Sơn đến chỗ gặp nhau là: \(\frac{450}{x+5}\) (giờ)
Vì xe lửa thứ hai đi sau 1 giờ, nghĩa là thời gian đi đến chỗ gặp nhau ít hơn xe thứ nhất 1 giờ. Ta có phương trình:
\(\frac{450}{x}-\frac{450}{x+5}=1\)
\(\Leftrightarrow x^2+5x-2250=0\)
Giải phương trình ta được: x1 = 45 (nhận); x2 = -50 (loại)
Vậy: Vận tốc của xe lửa thứ nhất là 45km/h
Vận tốc của xe lửa thứ hai là 50km/h
Gọi x (km/h) là vận tốc của xe thứ nhất. Điều kiện x > 0.
Khi đó vận tốc của xe lửa thứ hai là x + 5 (km/h).
Thời gian xe lửa thứ nhất đi từ Hà Nội đến chỗ gặp nhau là: 450/x (giờ)
Thời gian xe lửa thứ hai đi từ Bình Sơn đến chỗ gặp nhau là: 450/x+5 (giờ)
Vì xe lửa thứ hai đi sau 1 giờ, nghĩa là thời gian đi đến chỗ gặp nhau ít hơn xe thứ nhất 1 giờ. Ta có phương trình:
450/x−450/x+5=1
⇔ \(x^2\) +5x−2250=0
Giải phương trình ta được: x1 = 45 (nhận); x2 = -50 (loại)
Vậy: Vận tốc của xe lửa thứ nhất là 45km/h
Vận tốc của xe lửa thứ hai là 50km/h
A B C H D E F
Gọi D, E, F lần lượt là chân đường cao hạ từ A, B, C của tam giác ABC.
+) \(\Delta AHE~\Delta ACD\)( vì ^HAE =^CAD, ^HEA=^CDA )
=> \(\frac{HA}{CA}=\frac{EA}{AD}\)=> \(\frac{HA}{CA}.\frac{HB}{BC}=\frac{EA}{CA}.\frac{HB}{BC}=\frac{2.EA.HB}{2.CA.BC}=\frac{S_{\Delta AHB}}{S_{ABC}}\)(1)
+) \(\Delta CHD~\Delta CBF\)( vì ^DCH=^FCB, ^CDH=^CFB )
=> \(\frac{CH}{CB}=\frac{CD}{CF}\)=> \(\frac{CH}{CB}.\frac{AH}{AB}=\frac{CD.AH}{CF.AB}=\frac{S_{AHC}}{S_{ABC}}\)(2)
+) \(\Delta ABE~\Delta HBF\)
=> \(\frac{HB}{AB}=\frac{BF}{BE}\Rightarrow\frac{HB}{AB}.\frac{HC}{AC}=\frac{BF.HC}{BE.AC}=\frac{S_{BHC}}{S_{ABC}}\)(3)
Từ (1) ; (2) ; (3) => \(\frac{HA}{CA}.\frac{HB}{BC}+\frac{CH}{CB}.\frac{AH}{AB}+\frac{HB}{AB}.\frac{HC}{AC}=\frac{S_{ABE}}{S_{ABC}}+\frac{S_{ABE}}{S_{ABC}}+\frac{S_{ABE}}{S_{ABC}}=1\)
=> \(\frac{HA}{BC}.\frac{HB}{AC}+\frac{HB}{AC}.\frac{HC}{AB}+\frac{HC}{AB}.\frac{HA}{BC}=1\)
Đặt: \(\frac{HA}{BC}=x;\frac{HB}{AC}=y;\frac{HC}{AB}=z\); x, y, z>0
Ta có: \(xy+yz+zx=1\)
=> \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)=3\)
=> \(x+y+z\ge\sqrt{3}\)
"=" xảy ra khi và chỉ khi x=y=z
Vậy : \(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge\sqrt{3}\)
"=" xảy ra <=> \(\frac{HA}{BC}=\frac{HB}{AC}=\frac{HC}{AB}\)
\(1)\hept{\begin{cases}x\sqrt{5}-\left(1+\sqrt{3}\right)y=1\left(1\right)\\\left(1-\sqrt{3}\right)x+y\sqrt{5}=1\left(2\right)\end{cases}}\)
Từ (1) ta rút ra được : \(x=\frac{1+\left(1+\sqrt{3}\right)y}{\sqrt{5}}\left(3\right)\)
Thay (3) vào phương trinh (2) ta được :
\(\frac{1+\left(1+\sqrt{3}\right)y}{\sqrt{5}}.\left(1-\sqrt{3}\right)+y\sqrt{5}=1\)
\(\Leftrightarrow\frac{1-\sqrt{3}+\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)y+5y}{\sqrt{5}}=1\)
\(\Leftrightarrow1-\sqrt{3}-2y+5y=\sqrt{5}\)
\(\Leftrightarrow3y=\sqrt{3}+\sqrt{5}-1\)
\(\Leftrightarrow y=\frac{\sqrt{3}+\sqrt{5}-1}{3}\)vào (3) ta được :
\(x=\frac{1}{\sqrt{5}}.\left[1+\left(1+\frac{1}{\sqrt{3}}\right).\frac{\sqrt{3}+\sqrt{5}-1}{3}\right]\)
\(x=\frac{\sqrt{3}+\sqrt{5}+1}{3}\)
Vậy hệ phương trình có nghiệm \(\left(\frac{\sqrt{3}+\sqrt{5}+1}{3};\frac{\sqrt{3}+\sqrt{5}-1}{3}\right)\)
Gọi vận tốc của hai vật lần lượt là : x ( cm/s ) ; y ( cm/s )
Điều kiện : x , y > 0
Chu vi vòng tròn là : \(20.\pi\left(cm\right)\)
Khi chuyển động cùng chiều , cứ 20 giây chúng lại gặp nhau . Nghĩa là quãng đường 2 vật đi được trong 20s chênh lệch nhau đúng bằng 1 vòng tròn
=> Ta có PT : \(20x-20y=20\pi\)
Khi chuyển động ngược chiều , cứ 4 giây là chúng lại gặp nhau . Nghĩa là tổng quãng đường đi được trong 4 giây đúng là 1 vòng tròn .
=> Ta có PT : \(4x+4y=20\pi\)
Ta có HPT : \(\hept{\begin{cases}20x-20y=20\pi\\4x+4y=20\pi\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=\pi\\x+y=5\pi\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\pi\\y=2\pi\end{cases}}\)
Vậy vận tốc của hai vật là : \(3\pi/s\); \(2\pi/s\)
n.gjmlgb,g.gtlf[y[rtlkyf;hk/, lơpu]tup[ươt[jnlgngkjko8769=89065
Sửa thành 2x + y = 4 cho dễ hơn tí nhé :Vvv
+ Xét phương trình 2x + y = 4 (1) <=> y = -2x + 4
Vậy phương trình (1) có nghiệm tổng quát là \(\left(x;-2x+4\right)\left(x\in R\right)\)
Đường thẳng biểu diễn tập nghiệm của phương trình (1) là đường thẳng (d) : y = -2x + 4.
Chọn x = 0 => y = 4
Chọn y = 0 => x = 2.
=> (d) đi qua hai điểm (0 ; 4) và (2 ; 0)
Phương trình tập nghiệm trên mặt phẳng tọa độ :
-2 -1 y -1 -2 0 x 1 2 3 4 1 2 3 4 (d) : y = 2x + 4 A
Gọi số lớn là x, số nhỏ là y \(\left(x,y\inℕ^∗\right);x,y>124\)
Tổng hai số bằng 1006 nên ta có: x + y = 1006
Số lớn chia số nhỏ được thương là 2, số dư là 124 nên ta có: x = 2y + 124.
Ta có hệ phương trình :
\(\hept{\begin{cases}x+y=1006\\x=2y+124\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=1006\\x-2y=124\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y-\left(x-2y\right)=882\\x+y=1006\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3y=882\\x+y=1006\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=294\\x=712\end{cases}}\)
Vậy hai số tự nhiên phải tìm là 712 và 294
a) Ta có : F = av2
Khi v = 2m/s thì F = 120N nên ta có : 120 = a . 22
<=> a = 30
b) Do a = 30 nên lực F được tính bởi công thức : F = 30v2
+ Với v = 10m/s thì F(10) = 30 . 102 = 3000 ( N )
+ Với v = 20m/s thì F(20) = 30 . 202 = 12000 ( N )
c) Ta có :
90km/h = 20m/s
Với v = 25m/s thì F(25) = 30 . 252 = 18750 ( N ) > 12000 ( N )
Vậy con thuyền không thể đi được trong gió bão với vận tốc gió 90km/h
a) Quãng đường chuyển động của vật sau 1 giây là: S = 4 .12 = 4m
Khi đó vật cách mặt đất là: 100 - 4 = 96m
Quãng đường chuyển động của vật sau 2 giây là: S = 4 . 22 = 4 . 4 = 16m
Khi đó vật cách mặt đất là 100 - 16 = 84m
b) Khi vật tới mặt đất, quãng đường chuyển động của nó là 100m. Khi đó ta có:
4t2 = 100 ⇔ t2 = 25
Do đó: t = ±√25 = ±5
Vì thời gian không thể âm nên t = 5(giây)
khó !!!
Cứ quy đồng là ra à. Làm biếng trình bày quá. Nên cho bạn đáp số thôi nhé
a/ \(\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\)
b/ x = 3 và A = 4