K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2016

khó !!!

5 tháng 9 2016

Cứ quy đồng là ra à. Làm biếng trình bày quá. Nên cho bạn đáp số thôi nhé

a/ \(\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\)

b/ x = 3 và A = 4

20 tháng 12 2016

Bài giải:

Gọi lãi suất cho vay là x (%), x > 0

Tiền lãi sau một năm là: 2 000 000 . x / 100  hay 20000x (đồng)

Sau 1 năm cả vốn lẫn lãi sẽ là: 2 000 000 + 20000x (đồng)

Tiền lãi riêng năm thứ hai phải chịu là:

(2 000 000 + 20000x) x/100 hay 20000x + 200x2

Số tiền sau hai năm bác Thời phải trả là:

2 000 000 + 40000x + 200x2 

Theo đầu bài ra ta có phương trình:

2 000 000 + 40 000x + 200x2 = 2 420 000 hay x2 + 200x - 2 100 = 0

Giải phương trình:

∆' = 1002 - 1 . (-2 100) = 10 000 + 2 100 = 12 100 =>  √∆' = 110

nên x= -100 - 110 / 1 = -210, x= - 100 + 110 / 1 = 10

  Vì x > 0 nên  x1 không thỏa mãn điều kiện của ẩn.

Trả lời: lãi suất là 10%.

Dễ !


 

2 tháng 10 2020

Gọi lãi suất cho vay là : x ( x > 0 )

Lãi suất sau năm đầu tiên là : 2 000 000 . x

Số tiền mà bác phải trả sau năm đầu tiên là :

2 000 000 + 2 000 000x = 2 000 000 ( 1 + x )

Số tiền trên được tính theo vốn của năm thứ 2

Số tiền lãi của năm thứ 2 là :

2 000 000 . ( 1 + x )x

Số tiền vốn và lãi phải trả sau năm thứ 2 là :

2 000 000 . ( 1 + x ) + 2 000 000 ( 1 + x ) x = 2 000 000 ( 1 + x )2

  •  Tải app VietJack. Xem lời giải nhanh hơn!

 Trang trước

Trang sau  

Bài 8: Giải bài toán bằng cách lập phương trình

Video Bài 42 trang 58 SGK Toán 9 Tập 2 - Cô Ngô Hoàng Ngọc Hà (Giáo viên VietJack)

Bài 42 (trang 58 SGK Toán 9 Tập 2): Bác Thời vay 2 000 000 đồng của ngân hàng để làm kinh tế gia đình trong thời hạn một năm. Lẽ ra cuối năm bác phải trả cả vốn lẫn lãi. Song bác đã được ngân hàng cho kéo dài thời hạn thêm một năm nữa, số lãi của năm đầu được gộp vào với vốn để tính lãi năm sau và lãi suất vẫn như cũ. Hết hai năm bác phải trả tất cả là 2 420 000 đồng. Hỏi lãi suất cho vay là bao nhiêu phần trăm trong một năm?

Lời giải

Gọi lãi suất cho vay là : x (x > 0).

Lãi suất sau năm đầu tiên là : 2 000 000.x

Số tiền bác phải trả sau năm đầu tiên là :

    2 000 000 + 2 000 000. x = 2 000 000.(1 + x)

Số tiền trên được tính là vốn của năm thứ hai.

Số tiền lãi của năm thứ hai là : 2 000 000.(1 + x).x

Số tiền vốn và lãi phải trả sau năm thứ hai là:

    2 000 000.(1 + x) + 2 000 000.(1 + x). x = 2 000 000.(1 + x)2

Theo đề bài ta có phương trình :

        2 000 000 . ( 1 + x )2 = 2 420 000

    <=> ( 1 + x )2 = 1,21

    <=> 1 + x = 1,1 ( Vì 1 + x > 0 )

    <=> x = 0,1 = 10%

Vậy lãi suất ngân hàng là 10% / năm

29 tháng 8 2020

a) Ta có: \(\sqrt{16-6\sqrt{7}}+\sqrt{7}\)

\(=\sqrt{3^2-2.3.\sqrt{7}+7}+\sqrt{7}\)

\(=\sqrt{\left(3-\sqrt{7}\right)^2}+\sqrt{7}\)

\(=\left|3-\sqrt{7}\right|+\sqrt{7}\)

\(=3-\sqrt{7}+\sqrt{7}\)

\(=3\)

29 tháng 8 2020

b) Ta có: \(\sqrt{\left|12\sqrt{5}-29\right|}+\sqrt{12\sqrt{5}+29}\)

\(=\sqrt{\left(\sqrt{29-12\sqrt{5}}+\sqrt{12\sqrt{5}+29}\right)^2}\)

\(=\sqrt{29-12\sqrt{5}+2\sqrt{\left(29-12\sqrt{5}\right)\left(12\sqrt{5}+29\right)}+12\sqrt{5}+29}\)

\(=\sqrt{58+2\sqrt{121}}\)

\(=\sqrt{58+2.11}\)

\(=\sqrt{80}=4\sqrt{5}\)

17 tháng 5 2017

Gọi x (km/h) là vận tốc của xe thứ nhất. Điều kiện x > 0.

Khi đó vận tốc của xe lửa  thứ hai là x + 5 (km/h).

Thời gian xe lửa thứ nhất đi từ Hà Nội đến chỗ gặp nhau là: \(\frac{450}{x}\) (giờ)

Thời gian xe lửa thứ hai đi từ Bình Sơn đến chỗ gặp nhau là: \(\frac{450}{x+5}\) (giờ)

Vì xe lửa thứ hai đi sau 1 giờ, nghĩa là thời gian đi đến chỗ gặp nhau ít hơn xe thứ nhất 1 giờ. Ta có phương trình:

\(\frac{450}{x}-\frac{450}{x+5}=1\)

\(\Leftrightarrow x^2+5x-2250=0\)

Giải phương trình ta được: x1 = 45 (nhận); x2 = -50 (loại)

Vậy: Vận tốc của xe lửa thứ nhất là 45km/h

Vận tốc của xe lửa thứ hai là 50km/h

17 tháng 5 2017

Gọi x (km/h) là vận tốc của xe thứ nhất. Điều kiện x > 0.

Khi đó vận tốc của xe lửa thứ hai là x + 5 (km/h).

Thời gian xe lửa thứ nhất đi từ Hà Nội đến chỗ gặp nhau là: 450/x (giờ)

Thời gian xe lửa thứ hai đi từ Bình Sơn đến chỗ gặp nhau là: 450/x+5 (giờ)

Vì xe lửa thứ hai đi sau 1 giờ, nghĩa là thời gian đi đến chỗ gặp nhau ít hơn xe thứ nhất 1 giờ. Ta có phương trình:

450/x−450/x+5=1

\(x^2\) +5x−2250=0

Giải phương trình ta được: x1 = 45 (nhận); x2 = -50 (loại)

Vậy: Vận tốc của xe lửa thứ nhất là 45km/h

Vận tốc của xe lửa thứ hai là 50km/h

6 tháng 8 2019

A B C H D E F

Gọi D, E, F lần lượt là chân đường cao hạ từ A, B, C của tam giác ABC.

+) \(\Delta AHE~\Delta ACD\)( vì ^HAE =^CAD, ^HEA=^CDA )

=> \(\frac{HA}{CA}=\frac{EA}{AD}\)=> \(\frac{HA}{CA}.\frac{HB}{BC}=\frac{EA}{CA}.\frac{HB}{BC}=\frac{2.EA.HB}{2.CA.BC}=\frac{S_{\Delta AHB}}{S_{ABC}}\)(1)

+) \(\Delta CHD~\Delta CBF\)( vì ^DCH=^FCB, ^CDH=^CFB )

=> \(\frac{CH}{CB}=\frac{CD}{CF}\)=> \(\frac{CH}{CB}.\frac{AH}{AB}=\frac{CD.AH}{CF.AB}=\frac{S_{AHC}}{S_{ABC}}\)(2)

+) \(\Delta ABE~\Delta HBF\)

=> \(\frac{HB}{AB}=\frac{BF}{BE}\Rightarrow\frac{HB}{AB}.\frac{HC}{AC}=\frac{BF.HC}{BE.AC}=\frac{S_{BHC}}{S_{ABC}}\)(3)

Từ (1) ; (2) ; (3) => \(\frac{HA}{CA}.\frac{HB}{BC}+\frac{CH}{CB}.\frac{AH}{AB}+\frac{HB}{AB}.\frac{HC}{AC}=\frac{S_{ABE}}{S_{ABC}}+\frac{S_{ABE}}{S_{ABC}}+\frac{S_{ABE}}{S_{ABC}}=1\)

=> \(\frac{HA}{BC}.\frac{HB}{AC}+\frac{HB}{AC}.\frac{HC}{AB}+\frac{HC}{AB}.\frac{HA}{BC}=1\)

Đặt: \(\frac{HA}{BC}=x;\frac{HB}{AC}=y;\frac{HC}{AB}=z\); x, y, z>0

Ta có: \(xy+yz+zx=1\)

=> \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)=3\)

=> \(x+y+z\ge\sqrt{3}\)

"=" xảy ra khi và chỉ khi x=y=z

Vậy : \(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge\sqrt{3}\)

"=" xảy ra <=> \(\frac{HA}{BC}=\frac{HB}{AC}=\frac{HC}{AB}\)

1 tháng 10 2020

\(1)\hept{\begin{cases}x\sqrt{5}-\left(1+\sqrt{3}\right)y=1\left(1\right)\\\left(1-\sqrt{3}\right)x+y\sqrt{5}=1\left(2\right)\end{cases}}\)

Từ (1) ta rút ra được : \(x=\frac{1+\left(1+\sqrt{3}\right)y}{\sqrt{5}}\left(3\right)\)

Thay (3) vào phương trinh (2) ta được : 

\(\frac{1+\left(1+\sqrt{3}\right)y}{\sqrt{5}}.\left(1-\sqrt{3}\right)+y\sqrt{5}=1\)

\(\Leftrightarrow\frac{1-\sqrt{3}+\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)y+5y}{\sqrt{5}}=1\)

\(\Leftrightarrow1-\sqrt{3}-2y+5y=\sqrt{5}\)

\(\Leftrightarrow3y=\sqrt{3}+\sqrt{5}-1\)

\(\Leftrightarrow y=\frac{\sqrt{3}+\sqrt{5}-1}{3}\)vào (3) ta được :

\(x=\frac{1}{\sqrt{5}}.\left[1+\left(1+\frac{1}{\sqrt{3}}\right).\frac{\sqrt{3}+\sqrt{5}-1}{3}\right]\)

\(x=\frac{\sqrt{3}+\sqrt{5}+1}{3}\)

Vậy hệ phương trình có nghiệm \(\left(\frac{\sqrt{3}+\sqrt{5}+1}{3};\frac{\sqrt{3}+\sqrt{5}-1}{3}\right)\)

30 tháng 9 2020

Gọi vận tốc của hai vật lần lượt là : x ( cm/s ) ; y ( cm/s )

Điều kiện : x , y > 0

Chu vi vòng tròn là : \(20.\pi\left(cm\right)\)

Khi chuyển động cùng chiều , cứ 20 giây chúng lại gặp nhau . Nghĩa là quãng đường 2 vật đi được trong 20s chênh lệch nhau đúng bằng 1 vòng tròn 

=> Ta có PT : \(20x-20y=20\pi\)

Khi chuyển động ngược chiều , cứ 4 giây là chúng lại gặp nhau . Nghĩa là tổng quãng đường đi được trong 4 giây đúng là 1 vòng tròn .

=> Ta có PT : \(4x+4y=20\pi\)

Ta có HPT : \(\hept{\begin{cases}20x-20y=20\pi\\4x+4y=20\pi\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=\pi\\x+y=5\pi\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\pi\\y=2\pi\end{cases}}\)

Vậy vận tốc của hai vật là : \(3\pi/s\)\(2\pi/s\)

30 tháng 9 2020

n.gjmlgb,g.gtlf[y[rtlkyf;hk/, lơpu]tup[ươt[jnlgngkjko8769=89065

30 tháng 9 2020

Sửa thành 2x + y = 4 cho dễ hơn tí nhé :Vvv

+ Xét phương trình 2x + y = 4 (1) <=> y = -2x + 4

Vậy phương trình (1) có nghiệm tổng quát là  \(\left(x;-2x+4\right)\left(x\in R\right)\)

Đường thẳng biểu diễn tập nghiệm của phương trình (1) là đường thẳng (d) : y = -2x + 4.

Chọn x = 0 => y = 4

Chọn y = 0 => x = 2.

=> (d) đi qua hai điểm (0 ; 4) và (2 ; 0)

Phương trình tập nghiệm trên mặt phẳng tọa độ :

-2 -1 y -1 -2 0 x 1 2 3 4 1 2 3 4 (d) : y = 2x + 4 A

30 tháng 9 2020

Gọi số lớn là x, số nhỏ là y \(\left(x,y\inℕ^∗\right);x,y>124\)

Tổng hai số bằng 1006 nên ta có: x + y = 1006

Số lớn chia số nhỏ được thương là 2, số dư là 124 nên ta có: x = 2y + 124.

Ta có hệ phương trình :

\(\hept{\begin{cases}x+y=1006\\x=2y+124\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=1006\\x-2y=124\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y-\left(x-2y\right)=882\\x+y=1006\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3y=882\\x+y=1006\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=294\\x=712\end{cases}}\)

Vậy hai số tự nhiên phải tìm là 712 và 294

Một vật rơi ở độ cao so với mặt đất là 100 m. Quãng đường chuyển động s (mét) của vật rơi phụ thuộc vào thời gian t (giây) bởi công thức: s = = 4t2.a) Sau 1 giây, vật này cách mặt đất bao nhiêu mét ? Tương tự, sau 2 giây ?b) Hỏi sau bao lâu vật này tiếp đất ?Lực F của gió khi thổi vuông góc vào cánh buồm tỉ lệ thuận với bình phương vận tốc v của gió, tức là F = av2 (a là hằng số)....
Đọc tiếp

Một vật rơi ở độ cao so với mặt đất là 100 m. Quãng đường chuyển động s (mét) của vật rơi phụ thuộc vào thời gian t (giây) bởi công thức: s = = 4t2.

a) Sau 1 giây, vật này cách mặt đất bao nhiêu mét ? Tương tự, sau 2 giây ?

b) Hỏi sau bao lâu vật này tiếp đất ?

Lực F của gió khi thổi vuông góc vào cánh buồm tỉ lệ thuận với bình phương vận tốc v của gió, tức là F = av2 (a là hằng số). Biết rằng khi vận tốc gió bằng 2 m/s thì lực tác động lên cánh buồm của một con thuyền bằng 120 N (Niu –tơn) a) Tính hằng số a. b) Hỏi khi v = 10 m/s thì lực F bằng bao nhiêu ? Cùng câu hỏi này khi v = 20 m/s ?

c) Biết rằng cánh buồm chỉ có thể chịu được một áp lực tối đa là 12 000 N, hỏi con thuyền có thể đi được trong gió bão với vận tốc gió 90 km/h hay không ?

7
30 tháng 9 2020

a) Ta có : F = av2 

Khi v = 2m/s thì F = 120N nên ta có : 120 = a . 22  

                                                                <=> a = 30

b) Do a = 30 nên lực F được tính bởi công thức : F = 30v2

+ Với v = 10m/s thì F(10) = 30 . 102 = 3000 ( N )

+ Với v = 20m/s thì F(20) = 30 . 202 = 12000 ( N )

c) Ta có :

90km/h = 20m/s

Với v = 25m/s thì F(25) = 30 . 252 = 18750 ( N ) > 12000 ( N )

Vậy con thuyền không thể đi được trong gió bão với vận tốc gió 90km/h

16 tháng 7 2017

a) Quãng đường chuyển động của vật sau 1 giây là: S = 4 .12 = 4m

Khi đó vật cách mặt đất là: 100 - 4 = 96m

Quãng đường chuyển động của vật sau 2 giây là: S = 4 . 22 = 4 . 4 = 16m

Khi đó vật cách mặt đất là 100 - 16 = 84m

b) Khi vật tới mặt đất, quãng đường chuyển động của nó là 100m. Khi đó ta có:

4t2 = 100 ⇔ t2 = 25

Do đó: t = ±√25 = ±5

Vì thời gian không thể âm nên t = 5(giây)