x,y lớn hơn hoặc bằng 0, \(x^2+4y=8\) . Tìm min \(P=x+y+\frac{10}{x+y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


b dễ làm trước,a ko biết làm ):
b)\(\sqrt{2+\sqrt{x}}=3\)
ĐK : \(\sqrt{x}=7\)
\(x=49\)
\(\sqrt{2+\sqrt{49}}=3\Rightarrow\sqrt{2+7}=3\Leftrightarrow\sqrt{9}=3\Rightarrow3=3\)
\(\sqrt{\frac{1}{4}x^2+x+1}-\sqrt{6-2\sqrt{5}}=0\)
<=> \(\sqrt{\left(\frac{1}{2}x\right)^2+2\cdot\frac{1}{2}x\cdot1+1^2}-\sqrt{5-2\sqrt{5}+1}=0\)
<=> \(\sqrt{\left(\frac{1}{2}x+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}=0\)
<=> \(\left|\frac{1}{2}x+1\right|-\left|\sqrt{5}-1\right|=0\)
<=> \(\left|\frac{1}{2}x+1\right|-\left(\sqrt{5}-1\right)=0\)
<=> \(\left|\frac{1}{2}x+1\right|=\sqrt{5}-1\)
<=> \(\orbr{\begin{cases}\frac{1}{2}x+1=\sqrt{5}-1\\\frac{1}{2}x+1=1-\sqrt{5}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4+2\sqrt{5}\\x=-2\sqrt{5}\end{cases}}\)
b) \(\sqrt{2+\sqrt{x}}=3\)
ĐK : x ≥ 0
Bình phương hai vế
pt <=> \(2+\sqrt{x}=9\)
<=> \(\sqrt{x}=7\)
<=> \(x=49\left(tm\right)\)

Vì abc = 1 nên ta có thể đặt \(\left(a;b;c\right)\rightarrow\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\). Khi đó:
\(VT=\Sigma_{cyc}\frac{1}{\sqrt{\frac{x}{z}+\frac{x}{y}+2}}=\Sigma_{cyc}\frac{\sqrt{yz}}{\sqrt{xy+xz+2yz}}\)
\(\Rightarrow VT^2\le\left(1+1+1\right)\left(\Sigma_{cyc}\frac{yz}{xy+xz+2yz}\right)\left(\text{ }\right)\)(Theo BĐT Cauchy-Schwarz)
\(\le\frac{3}{4}\left[\Sigma_{cyc}yz\left(\frac{1}{xy+yz}+\frac{1}{xz+yz}\right)\right]=\frac{3}{4}\left(\Sigma_{cyc}\frac{xy+yz}{xy+yz}\right)=\frac{9}{4}\)
\(\Rightarrow VT\le\frac{3}{2}\)
Đẳng thức xảy ra khi x = y = z hay a = b = c = 1

Sử dụng AM-GM:
\(\Sigma\frac{\sqrt{ab}}{a+b+2c}=\Sigma\frac{\sqrt{ab}}{a+c+b+c}\le\frac{1}{2}\Sigma\frac{\sqrt{ab}}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{4}\Sigma\left(\frac{a}{a+c}+\frac{b}{b+c}\right)=\frac{3}{4}\)
Đẳng thức xảy ra tại a=b=c

\(xy+\sqrt{\left(1+y^2\right)\left(1+x^2\right)}=1\)
\(\Leftrightarrow\sqrt{\left(1+y^2\right)\left(1+x^2\right)}=1-xy\)
\(\Leftrightarrow\left(1+y^2\right)\left(1+x^2\right)=1+x^2y^2-2xy\)
\(\Leftrightarrow1+x^2+y^2+x^2y^2=1+x^2y^2-2xy\)
\(\Leftrightarrow x^2+y^2=-2xy\)
\(\Leftrightarrow x^2+y^2+2xy=0\)
\(\Leftrightarrow\left(x+y\right)^2=0\)
\(\Leftrightarrow x=-y\)
Thay vào ,ta có
\(x\sqrt{1+y^2}+y\sqrt{1+x^2}=-y\sqrt{1+x^2}+y\sqrt{1+x^2}=0\)(đpcm)
đây là cách của mk
@-@
Ta có \(1=\left(xy+\sqrt{\left(1+y^2\right)\left(1+x^2\right)}\right)^2\)
\(=x^2y^2+\left(1+y^2\right)\left(1+x^2\right)+2xy\sqrt{\left(1+y^2\right)\left(1+x^2\right)}\)
\(=x^2y^2+1+x^2+y^2+x^2y^2+2xy\sqrt{\left(1+y^2\right)\left(1+x^2\right)}\)
\(=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+y^2\right)\left(1+x^2\right)}+1\)
\(\Leftrightarrow x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+y^2\right)\left(1+x^2\right)}=0\)
\(\Leftrightarrow\left(x\sqrt{1+y^2}+y\sqrt{1+x^2}\right)^2=0\)
\(\Rightarrow x\sqrt{1+y^2}+y\sqrt{1+x^2}=0\)

A B H K O M x y N
a/ Ta có : \(\hept{\begin{cases}AH\text{//}OM\text{//}BK\\OA=OB\end{cases}}\) \(\Rightarrow\)OM là đường trung bình của hình thang ABKH
\(\Rightarrow\)\(AH+BK=2OM=2R\) (không đổi)
b/ Từ M hạ MN vuông góc với AB tại N (1)
Ta sẽ chứng minh MN = MK
Xét trong (O;R) thì : \(\widehat{BMK}=\widehat{MAB}\) (cùng chắn cung MB)
Mà : \(\hept{\begin{cases}\widehat{BMK}+\widehat{MBK}=90^o\\\widehat{MAB}+\widehat{MBA}=90^o\end{cases}}\) \(\Rightarrow\)\(\widehat{MBA}=\widehat{MBK}\)
Xét hai tam giác vuông NBM và KBM có MB là cạnh huyền (chung) , \(\widehat{MBA}=\widehat{MBK}\)
\(\Rightarrow\)\(\Delta NBM=\Delta KBM\) (ch.gn)
\(\Rightarrow\) MN = MK (2)
Từ (1) và (2) suy ra đpcm.
c/ Vì ABKH là hình thang vuông nên \(S_{ABKH}=\frac{1}{2}\left(AH+BK\right).HK=\frac{1}{2}.2OM.HK\)
\(=\left(2MN\right).OM\) . Mà OM = R không đổi, vậy \(maxS_{ABKH}\Leftrightarrow maxMN\Leftrightarrow MN=OM\)\(\Leftrightarrow\)M là điểm chính giữa cung AB
Khi đó thì : \(S_{ABKH}=2OM.OM=2R^2\)
Ta có: \(x^2+4y=8\)
<=> \(y=\frac{8-x^2}{4}\)
\(P=x+y+\frac{9}{x+y}+\frac{1}{x+y}\)
\(=\left(x+y+\frac{9}{x+y}\right)+\frac{1}{x+\frac{8-x^2}{4}}\)
\(\ge2\sqrt{\left(x+y\right).\frac{9}{x+y}}+\frac{4}{-x^2+4x+8}\)
\(=2.3+\frac{4}{-\left(x^2-4x+4\right)+12}=6+\frac{4}{-\left(x-2\right)^2+12}\)
\(\ge6+\frac{4}{12}=\frac{19}{3}\)
Dấu "=" xảy ra <=> x = 2; y =1