Bài 1 : Phân tích đa thức thành nhân tử:
a) ( ab - 1 )2 + ( a + b )2
b) x3 + 2x2 + 2x + 1
c) x3 - 4x2 + 12x - 27
d) x4 - 2x3 + 2x - 1
e) x1 + 2x3 + 2x2 + 2x + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)\)
\(=\left[a.\left(a+b+c\right)+bc\right]\left[b.\left(a+b+c\right)+ac\right]\left[c.\left(a+b+c\right)+ab\right]\)
\(=\left(a^2+ab+ac+bc\right)\left(ba+b^2+bc+ac\right)\left(ca+cb+c^2+ab\right)\)
\(=\left[\left(a^2+ab\right)+\left(ac+bc\right)\right]\left[\left(ba+b^2\right)+\left(bc+ac\right)\right]\left[\left(ca+c^2\right)\left(cb+ab\right)\right]\)
\(=\left[a\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+b\right)+c\left(b+a\right)\right]\left[c\left(a+c\right)b\left(b+b\right)\right]\)
\(=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)\)
\(=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)
\(\Rightarrowđpcm\)
\(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)\)
\(=\left[a\left(a+b+c\right)+bc\right]\left[b\left(a+b+c\right)+ac\right]\left[c\left(a+b+c\right)+ab\right]\)
\(=\left(a^2+ab+ac+bc\right)\left(ab+b^2+bc+ac\right)\left(ac+bc+c^2+ab\right)\)
\(=\left[\left(a^2+ab\right)+\left(ac+bc\right)\right]\left[\left(ab+b^2\right)+\left(bc+ac\right)\right]\left[\left(ac+c^2\right)+\left(bc+ab\right)\right]\)
\(=\left[a\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+b\right)+c\left(a+b\right)\right]\left[c\left(a+c\right)+b\left(a+c\right)\right]\)
\(=\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
\(=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)
\(\Rightarrowđpcm\)
2. Hợp chất : Fe3O4 ; H2SO4 ; KHCO3 ;...
1. Đơn chất : O ; Fe ; H ; C ; Cu
3. Hỗn hợp : ... Tự tìm :))
1, 23.2+12.1+16.3+10(1.2+16)=286 (dvC)
2, 12n+2n+z+x+(12.1+16.1+16.1+1.1)x
=12n+2n+z+x+43x = 14n+z+44x (dvC)
2, phan 3
H2 + O2, H2 & N2, Na + O2, Fe + O, CO2 & O2
Bài 2:
Ta có: \(a+b+c=2\)
\(\Leftrightarrow\left(a+b+c\right)^2=4\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=4\)
\(\Leftrightarrow2\left(ab+bc+ca\right)=2\)
\(\Rightarrow ab+bc+ca=1\)
Thay vào ta được: \(a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)
Tương tự CM được: \(b^2+1=\left(b+a\right)\left(b+c\right)\) và \(c^2+1=\left(c+a\right)\left(c+b\right)\)
=> \(M=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
=> đpcm
a. Ta có : (x + y)[(x - y)2 + xy]
= (x + y)(x2 - 2xy + y2 + xy)
= (x + y)(x2 - xy + y2)
= x3 + y3
b. Ta có : x3 + y3 - xy(x + y)
= x3 + y3 - x2y - xy2
=x2(x - y) + y2(y - x)
= (x - y)(x2 - y2)
= (x - y)2.(x + y) đpcm
c) Ta có (x + y)3 - 3xy(x + y)
= (x + y)[(x + y)2 - 3xy)
= (x + y)(x2 + 2xy + y2 - 3xy)
= (x + y)(x2 - xy + y2) (đpcm)
a) VP = ( x + y )( x2 - 2xy + y2 + xy ) = ( x + y )( x2 - xy + y2 ) = x3 + y3 = VT ( đpcm )
b) VP = ( x + y )( x - y )2 = ( x + y )( x2 - 2xy + y2 ) = x3 - 2x2y + xy2 + x2y - 2xy2 + y3 = x3 + y3 - x2y - xy2 = x3 + y3 - xy( x + y ) = VT ( đpcm )
c) VP = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 = x3 + y3 = ( x + y )( x2 - xy + y2 ) = VT ( đpcm )
a) ∆MBC có hai đường cao BP và CQ cắt nhau tại E nên E là trực tâm của tam giác => ME là đường cao thứ ba => ME⊥BC (đpcm)
b) ABCD là hình chữ nhật (1) nên AB⊥BC kết hợp với ME⊥BC => ME // AB (2) mà M là trung điểm của AP nên E là trung điểm của BP => ME là đường trung bình của ∆APB => ME = 1/2AB và NC = 1/2CD (gt) nên ME = NC (do AB = CD)
Từ (1) và (2) suy ra ME//NC
Tứ giác MNCE có ME = NC và ME//NC nên là hình bình hành
c) Tứ giác MNCE là hình bình hành nên ^NMC = ^MCE
Mà ^MCE + ^CMQ = 900 (∆MCQ vuông tại Q) nên ^NMC + ^CMQ = 900 => NMQ = 900 => BM vuông góc với MN (đpcm)
(a2001 + b2001).(a+ b) - (a2000 + b2000).ab = a2002 + b2002
(a+ b) – ab = 1
(a – 1).(b – 1) = 0
a = 1 hoặc b = 1
Với a = 1 => b2000 = b2001 => b = 1 hoặc b = 0 (loại)
Với b = 1 => a2000 = a2001 => a = 1 hoặc a = 0 (loại)
Vậy a = 1; b = 1 => a2011 + b2011 = 2
(a2001 + b2001).(a+ b) - (a2000 + b2000).ab = a2002 + b2002
(a+ b) – ab = 1
(a – 1).(b – 1) = 0
a = 1 hoặc b = 1
Với a = 1 => b2000 = b2001 => b = 1 hoặc b = 0 (loại)
Với b = 1 => a2000 = a2001 => a = 1 hoặc a = 0 (loại)
Vậy a = 1; b = 1 => a2011 + b2011 = 2
b, \(x^3+2x^2+2x+1=\left(x^2+x+1\right)\left(x+1\right)\)
c, \(x^3-4x^2+12x-27=\left(x^2-x+9\right)\left(x-3\right)\)
d, \(x^4-2x^3+2x-1=\left(x-1\right)^3\left(x+1\right)\)
e, sai đề
a, \(\left(ab-1\right)^2+\left(a+b\right)^2=\left(a^2+1\right)\left(b^2+1\right)\)
b, \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2+x+1\right)\)
c, \(x^3-4x^2+12x-27=\left(x-3\right)\left(x^2-x+9\right)\)
d, \(x^4-2x^3+2x-1=\left(x-1\right)^3\left(x+1\right)\)
e, cho mình sửa đề xíu
\(x^4+2x^3+2x^2+2x+1=\left(x+1\right)^2\left(x^2+1\right)\)