K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2020

a) đk: \(x\ge-2\)

Ta có: \(\sqrt{x+2}-\sqrt{4x+8}+\frac{3}{4}\sqrt{9x+18}=3\)

\(\Leftrightarrow\sqrt{x+2}-2\sqrt{x+2}+\frac{9}{4}\sqrt{x+2}=3\)

\(\Leftrightarrow\frac{5}{4}\sqrt{x+2}=3\)

\(\Leftrightarrow\sqrt{x+2}=\frac{12}{5}\)

\(\Leftrightarrow x+2=\frac{144}{25}\)

\(\Rightarrow x=\frac{94}{25}\) (tm)

b) đk: \(x\ge\frac{3}{2}\)

Ta có: \(\sqrt{x^2-4x+4}=2x-3\)

\(\Leftrightarrow\left|x-2\right|=2x-3\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=2x-3\\x-2=3-2x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=\frac{5}{3}\left(tm\right)\end{cases}}\)

21 tháng 10 2020

a) \(\sqrt{x+2}-\sqrt{4x+8}+\frac{3}{4}\sqrt{9x+18}=3\)

ĐKXĐ : x ≥ -2

⇔ \(\sqrt{x+2}-\sqrt{2^2\left(x+2\right)}+\frac{3}{4}\sqrt{3^2\left(x+2\right)}=3\)

⇔ \(\sqrt{x+2}-2\sqrt{x+2}+\frac{3}{4}\cdot3\sqrt{x+2}=3\)

⇔ \(-\sqrt{x+2}+\frac{9}{4}\sqrt{x+2}=3\)

⇔ \(\frac{5}{4}\sqrt{x+2}=3\)

⇔ \(\sqrt{x+2}=\frac{12}{5}\)

⇔ \(x+2=\frac{144}{25}\)

⇔ \(x=\frac{94}{25}\left(tmđk\right)\)

b) \(\sqrt{x^2-4x+4}=2x-3\)

⇔ \(\sqrt{\left(x-2\right)^2}=2x-3\)

⇔ \(\left|x-2\right|=2x-3\)(1)

Với x < 2

(1) ⇔ -( x - 2 ) = 2x - 3

     ⇔ 2 - x = 2x - 3

     ⇔ -x - 2x = -3 - 2

     ⇔ -3x = -5

     ⇔ x = 5/3 ( tm )

Với x ≥ 2

(1) ⇔ x - 2 = 2x - 3

     ⇔ x - 2x = -3 + 2

     ⇔ -x = -1

     ⇔ x = 1 ( ktm )

Vậy x = 5/3

21 tháng 10 2020

Phương pháp tách khá dễ thôi

Ta có: \(\sqrt{43-30\sqrt{2}}\)

\(=\sqrt{25-30\sqrt{2}+18}\)

\(=\sqrt{\left(5\right)^2-2\cdot5\cdot3\sqrt{2}+\left(3\sqrt{2}\right)^2}\)

\(=\sqrt{\left(5-3\sqrt{2}\right)^2}\)

\(=\left|5-3\sqrt{2}\right|\)

\(=5-3\sqrt{2}\)

22 tháng 10 2020

ĐKXĐ: x \(\ge\)0

Ta có: \(\frac{3\sqrt{x}}{\sqrt{x}+2}=3-\frac{6}{\sqrt{x}+2}\ge3-\frac{6}{2}=0\)

Giá trị nhỏ nhất của \(\frac{3\sqrt{x}}{\sqrt{x}+2}\)bằng 0 tại x = 0

22 tháng 10 2020

Bài của cô Chi làm hơi tắt =))

Cho \(A=\frac{3\sqrt{x}}{\sqrt{x}+2}=\frac{3\sqrt{x}+6-6}{\sqrt{x}+2}=\frac{3\left(\sqrt{x}+2\right)-6}{\sqrt{x}+2}=3-\frac{6}{\sqrt{x}+2}\ge3-3=0\)

Dấu bằng xảy ra 

\(\Leftrightarrow\frac{6}{\sqrt{x}+2}=3\)

\(\Leftrightarrow\sqrt{x}+2=2\)

\(\Leftrightarrow x=0\)

Vậy GTNN của A = 0 \(\Leftrightarrow x=0\)

24 tháng 10 2016

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) ta được

\(\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2b}\ge\frac{9}{2\left(a+2b\right)}\)

\(\frac{1}{2b}+\frac{1}{2c}+\frac{1}{2c}\ge\frac{9}{2\left(b+2c\right)}\)

\(\frac{1}{2c}+\frac{1}{2a}+\frac{1}{2a}\ge\frac{9}{2\left(c+2a\right)}\)

Cộng các BĐT theo vế : 

\(\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{9}{2}\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)

Dấu "=" xảy ra khi a = b = c (a,b,c>0)

2 tháng 6 2018

The BĐT \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\). Thật vậy, ta có:

Áp dụng BĐT Bunhiacopxki, ta có:

\(\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2+\left(\frac{c}{\sqrt{z}}\right)^2\right]\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\)

\(\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\left(x+y+z\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\ge\frac{\left(a+b+c\right)^2}{x+y+z}\). Thay a,b,c bởi 1 , ta được

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{9}{x+y+z}\)

Áp dụng vào ta có: \(3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\ge3.\frac{9}{3a+3b+3c}=3.\frac{9}{3\left(a+b+c\right)}=3.\frac{3}{a+b+c}\)

\(=\frac{9}{a+b+c}\)(1)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{9}{a+b+c}\)(2)

Vì (1) bằng (2) nên ta có đpcm . Dấu = xảy ra khi và chỉ khi a=b=c (a,b,c > 0)

21 tháng 9 2018

Bạn vẽ hình lên đi, rồi mình giải cho

21 tháng 9 2018

Bạn kham khảo bài của bạn vũ tiền châu tại link:

Câu hỏi của Nhóc vậy - Toán lớp 9 - Học toán với OnlineMath

21 tháng 10 2020

Giúp mình với mình đang cần gấp. Thk you các pạn

\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=a-\frac{ab^2}{a^2+b^2}+b-\frac{bc^2}{b^2+c^2}+c-\frac{ca^2}{c^2+a^2}\)

\(\ge a-\frac{ab^2}{2ab}+b-\frac{bc^2}{2bc}+c-\frac{ca^2}{2ca}=a-\frac{b}{2}+b-\frac{c}{2}+c-\frac{a}{2}=\frac{a+b+c}{2}\)

10 tháng 8 2017

Ê, thế bài 3 BVN làm thế nào

22 tháng 10 2017

\(\Leftrightarrow x^2-1+2\sqrt{x}.\sqrt{x^2-1}-3x=0\)

đặt \(\sqrt{x^2-1}=a;\sqrt{x}=b\)

=>a2+2ab-3b2=0

đến đây dễ rồi

30 tháng 4 2020

Điều kiện -1 =<x<0

Chia cả 2 vế cho x ta nhận được \(x+2\sqrt{x-\frac{1}{x}}=3+\frac{1}{x}\)

Đặt t=\(x-\frac{1}{x}\)ta giải được