2 bài bất đẳng thức,theo cảm nghĩ của em thì khá là hay.
1
Cho a,b,c dương thỏa mãn \(a^2+b^2+c^2=6\) Tìm:\(P_{min}=\frac{a}{bc}+\frac{2b}{ca}+\frac{5c}{ab}\)
2
Cho x,y,z thỏa mãn \(x,y,z\ge1;x+y+z=5\)
Tìm \(P_{max}=\frac{1-2x}{x^3+7x-y-z+1}+\frac{1-2y}{y^3+7y-z-x+1}+\frac{1-2z}{z^3+7z-x-y+1}\)
Bài 1 quan trong là đoán dấu đẳng thức.
1/ Có: \(36=\left(3+2+1\right)\left(a^2+b^2+c^2\right)\ge\left(\sqrt{3}a+\sqrt{2}b+c\right)^2\)
\(\therefore\sqrt{3}a+\sqrt{2}b+c\le6\)
\(\frac{1}{3}\left(\frac{a}{bc}+\frac{3b}{2ca}\right)+\frac{3}{2}\left(\frac{b}{ca}+\frac{2c}{ab}\right)+2\left(\frac{c}{ab}+\frac{a}{3bc}\right)\)
\(\ge\frac{\sqrt{6}}{3c}+\frac{3\sqrt{2}}{a}+\frac{4\sqrt{3}}{3b}\)
\(=\frac{\left(\frac{\sqrt{6}}{3}\right)}{c}+\frac{\left(3\sqrt{6}\right)}{\sqrt{3}a}+\frac{\left(\frac{4\sqrt{6}}{3}\right)}{\sqrt{2}b}\)
\(\ge\frac{\left(\sqrt{\frac{\sqrt{6}}{3}}+\sqrt{3\sqrt{6}}+\sqrt{\frac{4\sqrt{6}}{3}}\right)^2}{\sqrt{3}a+\sqrt{2}b+c}\ge2\sqrt{6}\)
Đẳng thức xảy ra khi \(a=\sqrt{3},b=\sqrt{2},c=1\)
Hiếm hoi thấy anh tth làm bất ko dùng sos