Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1 :
a, \(\left(x-1\right)^2+\left(x+1\right)^2-2x^2=x^2-2x+1+x^2+2x+1-2x^2=2\)
b, \(x^3+2x^2y+xy^2-9x=x\left(x^2+2xy+y^2-9\right)=x\left[\left(x+y\right)^2-9\right]=x\left(x+y-3\right)\left(x+y+3\right)\)
Bài 2 :
a, \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)=8x^3-4x^2y+2xy^2-4x^2y+2xy^2-y^3\)
\(=8x^3-8x^2y+4xy^2-y^3\)
b, \(6x^5y^2-9x^4y^3:3x^3y^2=\left(6x^5y^2:3x^3y^2\right)+\left(-9x^4y^3:3x^3y^2\right)=2x^2-3xy\)

Bài làm
ĐKXĐ : x ≠ 2
Ta có : \(\frac{x^3-2x^2+4}{x-2}=\frac{x^2\left(x-2\right)+4}{\left(x-2\right)}=\frac{x^2\left(x-2\right)}{x-2}+\frac{4}{x-2}=x^2+\frac{4}{x-2}\)
Vì x nguyên => x2 nguyên
=> Để phân thức có giá trị nguyên thì \(\frac{4}{x-2}\)có giá trị nguyên
=> \(4⋮\left(x-2\right)\)
=> \(\left(x-2\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
x-2 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 3 | 1 | 4 | 0 | 6 | -2 |
Các giá trị trên đều tmđk x ≠ 2
Vậy x ∈ { -2 ; 0 ; 1 ; 3 ; 4 ; 6 }

Dễ ợt đâu :))
\(2^{51}-1=\left(2+2^2+2^3+.....+2^{51}\right)-\left(1+2+2^2+....+2^{50}\right)\)
Ta có :
\(2+2^2+2^3+....+2^{51}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+....+\left(2^{49}+2^{50}+2^{51}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+....+2^{49}\left(1+2+2^2\right)\)
\(=2.7+2^4.7+....+2^{49}.7\)
\(=7\left(2+2^4+....+2^{49}\right)⋮7\)(1)
Chứng minh tương tự ta cũng có : \(\left(1+2+2^2+....+2^{50}\right)⋮7\)(2)
Từ (1) ; (2) \(\Rightarrow\left(2+2^2+2^3+.....+2^{51}\right)-\left(1+2+2^2+....+2^{50}\right)⋮7\)
Hay \(2^{51}-1⋮7\)(đpcm)
Cho tam giác ABC , đường cao AH . Biết AB = 15cm , AC = 41cm , HB = 12cm.Tính diện tích tam giác ABC

A B C H
Xét tam giác ABH ta có : \(AB^2=BH^2+AH^2\Rightarrow15^2=12^2+AH^2\)
\(AH^2=AB^2-BH^2=15^2-12^2=81\Rightarrow AH=9\)cm
Xét tam giác ACH ta có : \(AC^2=AH^2+HC^2\Rightarrow AC^2=AH^2+HC^2\)
\(HC^2=AC^2-AH^2=41^2-9^2=1600\Rightarrow HC=40\)cm
Ta có : \(BC=CH+HB=40+12=52\)cm
\(\Rightarrow S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.9.52=234\)cm2

a, \(x^2-\frac{x^4}{x^2}-1=x^2-x^2-1=-1\)
b, \(\frac{x+9}{x^2-9}-\frac{3}{x^2+3x}=\frac{x+9}{\left(x-3\right)\left(x+3\right)}-\frac{3}{x\left(x+3\right)}\)
\(=\frac{x\left(x+9\right)}{x\left(x-3\right)\left(x+3\right)}-\frac{3\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}=\frac{x^2+9x-3x+9}{x\left(x-3\right)\left(x+3\right)}\)
\(=\frac{x^2+6x+9}{x\left(x-3\right)\left(x+3\right)}=\frac{\left(x+3\right)^2}{x\left(x-3\right)\left(x+3\right)}=\frac{x+3}{x\left(x-3\right)}\)
c, \(\frac{1-3x}{2x}+\frac{3x-2}{2x-1}+\frac{3x-2}{2x-4x^2}=\frac{1-3x}{2x}+\frac{3x-2}{2x-1}+\frac{3x-2}{2x\left(1-2x\right)}\)
\(=\frac{1-3x}{2x}-\frac{3x-2}{1-2x}+\frac{3x-2}{2x\left(1-2x\right)}=\frac{\left(1-3x\right)\left(1-2x\right)}{2x\left(1-2x\right)}-\frac{2x\left(3x-2\right)}{2x\left(1-2x\right)}+\frac{3x-2}{2x\left(1-2x\right)}\)
\(=\frac{1-2x-3x+6x^2-6x^2+4x+3x-2}{2x\left(1-2x\right)}=\frac{-1+2x}{2x\left(1-2x\right)}=\frac{-\left(1-2x\right)}{2x\left(1-2x\right)}=\frac{-1}{2x}\)
d, viết lại đề đy nhé
e, \(\frac{x+1}{x-3}-\frac{1-x}{x+3}-\frac{2x\left(1-x\right)}{9-x^2}=\frac{x+1}{x-3}-\frac{1-x}{x+3}-\frac{2x-2x^2}{\left(3-x\right)\left(x+3\right)}\)
\(=\frac{x+1}{x-3}-\frac{1-x}{x+3}+\frac{2x-2x^2}{\left(x-3\right)\left(x+3\right)}=\frac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{\left(1-x\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{2x-2x^2}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{x^2+3x+x+3-x+3+x^2+3x+2x-2x^2}{\left(x-3\right)\left(x+3\right)}=\frac{8x+6}{\left(x-3\right)\left(x+3\right)}\)