Cho A = \(\dfrac{x-3\sqrt{x}+2}{x-4\sqrt{x}+3}\)
a) Tìm ĐKXĐ (NÊU RÕ CÁCH TÌM RA Ạ)
b) Rút gọn A
c) Tìm x để A thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{1-\sqrt{x^4-x^2}}=x-1\)
\(\Leftrightarrow1-\sqrt{x^4-x^2}=\left(x-1\right)^2\)
\(\Leftrightarrow-\sqrt{x^4-x^2}=x^2-2x+1-1\)
\(\Leftrightarrow x^4-x^2=\left(x^2-2x\right)^2\)
\(\Leftrightarrow x^4-x^2=x^4-4x^3+4x^2\)
\(\Leftrightarrow4x^3-5x^2=0\)
\(\Leftrightarrow x^2\left(4x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\4x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{4}\end{matrix}\right.\)
Gọi chiều dài, chiều rộng của mảnh vườn lần lượt là a và b ( 0< a,b< 210; m)
Theo đề bài ta có hệ pt:
2a + 2b = 110
4a + 8b = 316
⇒ a = 31 (m)
b = 24 (m)
- Độ dài ban đầu:
+ Nửa chu vi HCN là: \(\dfrac{110}{2}=55\left(m\right)\)
+ Gọi chiều dài HCN là: \(a\left(m\right)\left(đk:0< a< 55\right)\)
+ Chiều rộng HCN là: \(55-a\left(m\right)\)
- Độ dài sau khi thay đổi:
+ Nửa chu vi HCN là: \(\dfrac{316}{2}=158\left(m\right)\)
+ Chiều dài HCN là: \(2a\left(m\right)\)
+ Chiều rộng HCN là: \(4\left(55-a\right)\left(m\right)\)
Theo bài ra, ta có phương trình:
\(2a+4\left(55-a\right)=158\\ \Leftrightarrow2a+220-4a=158\\ \Leftrightarrow2a-4a=158-220\\ \Leftrightarrow-2a=-62\\ \Leftrightarrow a=31\left(m\right)\left(TM\right)\)
Vậy chiều dài là 31m, chiều rộng là 55 - 31 = 22m
a) gọi N là giao điểm của EF và AC
ta có \(DI//EF\Rightarrow\widehat{AID}=\widehat{ENC}\)(so le trong)
\(BK//EF\Rightarrow\widehat{CKB}=\widehat{ENC}\) (đồng vị)
do đó \(\widehat{AID}=\widehat{CKB}\)
Ta lại có \(\widehat{ADI}=180^o-\widehat{AID}-\widehat{IAD}\)
\(\widehat{CBK}=180^o-\widehat{CKB}-\widehat{KCB}\)
\(\widehat{AID}=\widehat{CKB}\) (cmt)
\(\widehat{IAD}=\widehat{KCB}\) (vì AB // CD)
nên \(\widehat{ADI}=\widehat{CBK}\)
Xét tam giác ADI và tam giác CBK có
\(\widehat{ADI}=\widehat{CBK}\)
AD = BC (vì ABCD là hình bình hành)
\(\widehat{IAD}=\widehat{KCB}\) (vì AB // CD)
do đó tam giác ADI = tam giác CBK (g . c . g)
=> AI = CK (2 cạnh tương ứng)
tong so vien bi cua 4 nguoi
16 x 4 = 64 vien
vay truoc khi duoc Tri ba ban con lai co so vien la
16 : 2 = 8 vien
so vien bi cua Tri co khi Phuoc cho ba bn kia
40 : 2 = 20 vien
so bi cua Hanh va Bao truoc khi duoc Tri cho
8 : 2 = 4 vien
so bi cua Phuoc truoc khi Phuoc chia bi
64 - 4 x2 - 20 = 36 vien
so vien bi cua Phuoc truoc khi Bao chia cho cac ban
36 : 2 = 18 vien
so bi cua Tri truoc khi Bao cho
20 : 2 = 10 vien
so bi cua Hanh truoc khi Bao cho
4 : 2 = 2 vien
so bi cua Bao truoc khi bao chia cho cac ban
64 - 2- 10 - 18 =34 vien
so bi cua Phuoc truoc khi Hanh cho
18 : 2 = 9 vien
so bi cua Tri truoc khi Hanh cho
10 : 2 = 5 vien
so bi cua Bao truoc khi Hanh cho
34 : 2 = 17 vien
so bi cua Hanh truoc khi Hanh cho cac ban
64 - 5 - 9 - 17 =33 vien
dap so Hanh 33 vien
Tri 5 vien
Bao 17 vien
Phuoc 9 vien
Ko biet co dung khong
\(x^3+xy-3x-y=5\)
\(\Leftrightarrow x^3-3x-5=y\left(1-x\right)\)
Với \(x=1\)không thỏa mãn.
Với \(x\ne1\):
\(y=\frac{x^3-3x-5}{1-x}=\frac{\left(x-1\right)\left(x^2+x-2\right)-7}{1-x}=-\left(x^2+x-2\right)+\frac{7}{x-1}\)
Để \(y\inℤ\)thì \(\frac{7}{x-1}\inℤ\Leftrightarrow x-1\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)
\(\Leftrightarrow x\in\left\{-6,0,2,8\right\}\)
Ta có các bộ \(\left(x,y\right)\)thỏa mãn là: \(\left(-6,-29\right),\left(0,-5\right),\left(2,3\right),\left(8,-69\right)\).
What the heo, lớp 7 đã khó nay lại còn lớp 8, thôi, chịu luôn !!!!!!
Có thể thêm bớt để xuất hiện hiệu hai bình phương. Ví dụ: PTĐTTNT: \(x^4+64\)
Nhận thấy \(64=8^2\), \(x^4=\left(x^2\right)^2\)nên ta tìm cách thêm bớt để xuất hiện hằng đẳng thức thứ nhất.
\(x^4+64=x^4+2.x^2.8+8^2-16x^2\)\(=\left(x^2+8\right)^2-\left(4x\right)^2\)\(=\left(x^2+4x+8\right)\left(x^2-4x+8\right)\)
(thêm bớt \(16x^2,-16x^2\))
Ta gặp may ở chỗ \(16x^2=\left(4x\right)^2\)nên phân tích dễ dàng hơn.
Có thể thêm bớt để xuất hiện nhân tử chung. Ta có một lưu ý:
Các đa thức có dạng \(x^{3m+1}+x^{3n+2}+1\)với \(m,n\inℕ\)khi phân tích thành nhân tử thì đều có nhân tử chung là \(x^2+x+1\)
Ví dụ: PTĐTTNT: \(x^4+x^2+1\)\(\left(\hept{\begin{cases}4=3.1+1\\2=3.0+2\end{cases}}\right)\)
Ta thấy trong đa thức này thiếu hạng tử \(x\)nên ta thêm bớt \(x,-x\)như sau:
\(x^4+x^2+1\)\(=x^4-x+x^2+x+1\)\(=x\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
Nói chung ở dạng bài này, nếu đa thức ban đầu thiếu cái gì trong \(x^2,x,1\)thì thêm cái đó, miễn làm sao nhớ bớt đi là được.
Cũng có thể giải bài này theo cách thêm bớt làm xuất hiện hiệu hai bình phương như sau:
\(x^4+x^2+1\)\(=x^4+2x^2+1-x^2\)\(=\left(x^2+1\right)^2-x^2\)\(=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
Ta lại gặp may ở chỗ \(x^2\)nên dễ phân tích.
Bạ xem bài làm của bạn Nguyễn Võ Thảo Vy ở đường link sau:
Câu hỏi của Nguyễn Desmond - Toán lớp 8 - Học toán với OnlineMath
TL
Bn xem bài của Nguyễn Thảo Vy ở quản lí đã đưa ra nha
Hok tốt nghen
Nhớ k mik nha
a + b, A=\(\dfrac{x-3\sqrt{x}+2}{x-4\sqrt{x}+3}\) = \(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)=\(\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\)
ĐKXĐ: \(\sqrt{x}-3\)\(\Leftrightarrow\sqrt{x}\)\(\ne\)3\(\Leftrightarrow\) x\(\ne\)9
c, \(\dfrac{\sqrt{x}-2}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3+1}{\sqrt{x}-3}=1+\dfrac{1}{\sqrt{x}-3}\Rightarrow\sqrt{x}-3\inƯ\left(1\right)=\left\{\pm1\right\}\)