K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2022

a + b, A=\(\dfrac{x-3\sqrt{x}+2}{x-4\sqrt{x}+3}\) = \(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)=\(\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\)

ĐKXĐ: \(\sqrt{x}-3\)\(\Leftrightarrow\sqrt{x}\)\(\ne\)3\(\Leftrightarrow\) x\(\ne\)9

 

15 tháng 8 2022

c, \(\dfrac{\sqrt{x}-2}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3+1}{\sqrt{x}-3}=1+\dfrac{1}{\sqrt{x}-3}\Rightarrow\sqrt{x}-3\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\sqrt{x}-3\) 1 -1
x 16 4

 

31 tháng 5 2022

\(\sqrt{1-\sqrt{x^4-x^2}}=x-1\)

\(\Leftrightarrow1-\sqrt{x^4-x^2}=\left(x-1\right)^2\)

\(\Leftrightarrow-\sqrt{x^4-x^2}=x^2-2x+1-1\)

\(\Leftrightarrow x^4-x^2=\left(x^2-2x\right)^2\)

\(\Leftrightarrow x^4-x^2=x^4-4x^3+4x^2\)

\(\Leftrightarrow4x^3-5x^2=0\)

\(\Leftrightarrow x^2\left(4x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\4x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{4}\end{matrix}\right.\)

31 tháng 5 2022

x=-căn bậc hai(17)/4-1/4, x=căn bậc hai(17)/4-1/4

 
20 tháng 5 2022

Gọi chiều dài, chiều rộng của mảnh vườn lần lượt là a và b ( 0< a,b< 210; m)

Theo đề bài ta có hệ pt: 

2a + 2b = 110

4a + 8b = 316 

⇒ a = 31 (m)

    b = 24 (m) 

20 tháng 5 2022

- Độ dài ban đầu:

+ Nửa chu vi HCN là: \(\dfrac{110}{2}=55\left(m\right)\)

+ Gọi chiều dài HCN là: \(a\left(m\right)\left(đk:0< a< 55\right)\)

+ Chiều rộng HCN là: \(55-a\left(m\right)\)

- Độ dài sau khi thay đổi:

+ Nửa chu vi HCN là: \(\dfrac{316}{2}=158\left(m\right)\)

+ Chiều dài HCN là: \(2a\left(m\right)\)

+ Chiều rộng HCN là: \(4\left(55-a\right)\left(m\right)\)

Theo bài ra, ta có phương trình:

\(2a+4\left(55-a\right)=158\\ \Leftrightarrow2a+220-4a=158\\ \Leftrightarrow2a-4a=158-220\\ \Leftrightarrow-2a=-62\\ \Leftrightarrow a=31\left(m\right)\left(TM\right)\)

Vậy chiều dài là 31m, chiều rộng là 55 - 31 = 22m

20 tháng 5 2022

loading...  

15 tháng 4 2020

a) gọi N là giao điểm của EF và AC
ta có  \(DI//EF\Rightarrow\widehat{AID}=\widehat{ENC}\)(so le trong)
\(BK//EF\Rightarrow\widehat{CKB}=\widehat{ENC}\) (đồng vị)
do đó \(\widehat{AID}=\widehat{CKB}\)
Ta lại có \(\widehat{ADI}=180^o-\widehat{AID}-\widehat{IAD}\)
\(\widehat{CBK}=180^o-\widehat{CKB}-\widehat{KCB}\)
\(\widehat{AID}=\widehat{CKB}\) (cmt)
\(\widehat{IAD}=\widehat{KCB}\) (vì AB // CD)
nên \(\widehat{ADI}=\widehat{CBK}\)
Xét tam giác ADI và tam giác CBK có
\(\widehat{ADI}=\widehat{CBK}\)
AD = BC (vì ABCD là hình bình hành)
\(\widehat{IAD}=\widehat{KCB}\) (vì AB // CD)
do đó tam giác ADI = tam giác CBK (g . c . g)
=> AI = CK (2 cạnh tương ứng)
 

29 tháng 1 2022

???????????????????

2 tháng 4 2015

ban nêu rõ ràng viết dấu đi

2 tháng 4 2015

tong so vien bi cua 4  nguoi

16 x 4 = 64 vien

vay truoc khi duoc Tri ba ban con lai co so vien la

16 : 2 = 8 vien

so vien bi cua Tri co khi Phuoc cho  ba bn kia 

40 : 2 = 20 vien

so bi cua Hanh va Bao truoc khi duoc Tri cho

8 : 2 = 4 vien

so bi cua Phuoc truoc khi Phuoc chia bi

64 - 4 x2 - 20 = 36 vien

so vien bi cua Phuoc truoc khi Bao chia cho cac ban

36 : 2 = 18 vien

so bi cua Tri truoc khi Bao cho

20 : 2  = 10 vien

so bi cua Hanh truoc khi Bao cho 

4 : 2 = 2 vien

so bi cua Bao truoc khi bao chia cho cac ban

64 - 2- 10 - 18 =34 vien

so bi cua Phuoc truoc khi Hanh cho

18 : 2 = 9 vien

so bi cua Tri truoc khi Hanh cho

10 : 2 = 5 vien

so bi cua  Bao truoc khi Hanh cho

34 : 2 = 17 vien

so bi cua Hanh truoc khi Hanh cho cac ban 

64 - 5 - 9 - 17 =33 vien

dap so Hanh 33 vien

          Tri 5 vien

          Bao 17 vien

          Phuoc 9 vien  

Ko biet co dung khong

DD
16 tháng 1 2022

\(x^3+xy-3x-y=5\)

\(\Leftrightarrow x^3-3x-5=y\left(1-x\right)\)

Với \(x=1\)không thỏa mãn. 

Với \(x\ne1\)

\(y=\frac{x^3-3x-5}{1-x}=\frac{\left(x-1\right)\left(x^2+x-2\right)-7}{1-x}=-\left(x^2+x-2\right)+\frac{7}{x-1}\)

Để \(y\inℤ\)thì \(\frac{7}{x-1}\inℤ\Leftrightarrow x-1\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)

\(\Leftrightarrow x\in\left\{-6,0,2,8\right\}\)

Ta có các bộ \(\left(x,y\right)\)thỏa mãn là: \(\left(-6,-29\right),\left(0,-5\right),\left(2,3\right),\left(8,-69\right)\).

16 tháng 1 2022
4Km 25dm=bao nhiêu
10 tháng 1 2022

gà em ơi

11 tháng 1 2022

What the heo, lớp 7 đã khó nay lại còn lớp 8, thôi, chịu luôn !!!!!!

2 tháng 1 2022

Có thể thêm bớt để xuất hiện hiệu hai bình phương. Ví dụ: PTĐTTNT: \(x^4+64\)

Nhận thấy \(64=8^2\)\(x^4=\left(x^2\right)^2\)nên ta tìm cách thêm bớt để xuất hiện hằng đẳng thức thứ nhất.

\(x^4+64=x^4+2.x^2.8+8^2-16x^2\)\(=\left(x^2+8\right)^2-\left(4x\right)^2\)\(=\left(x^2+4x+8\right)\left(x^2-4x+8\right)\)

(thêm bớt \(16x^2,-16x^2\))

Ta gặp may ở chỗ \(16x^2=\left(4x\right)^2\)nên phân tích dễ dàng hơn.

Có thể thêm bớt để xuất hiện nhân tử chung. Ta có một lưu ý:

Các đa thức có dạng \(x^{3m+1}+x^{3n+2}+1\)với \(m,n\inℕ\)khi phân tích thành nhân tử thì đều có nhân tử chung là \(x^2+x+1\)

Ví dụ: PTĐTTNT: \(x^4+x^2+1\)\(\left(\hept{\begin{cases}4=3.1+1\\2=3.0+2\end{cases}}\right)\)

Ta thấy trong đa thức này thiếu hạng tử \(x\)nên ta thêm bớt \(x,-x\)như sau:

\(x^4+x^2+1\)\(=x^4-x+x^2+x+1\)\(=x\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left(x^2-x+1\right)\)

Nói chung ở dạng bài này, nếu đa thức ban đầu thiếu cái gì trong \(x^2,x,1\)thì thêm cái đó, miễn làm sao nhớ bớt đi là được.

Cũng có thể giải bài này theo cách thêm bớt làm xuất hiện hiệu hai bình phương như sau:

\(x^4+x^2+1\)\(=x^4+2x^2+1-x^2\)\(=\left(x^2+1\right)^2-x^2\)\(=\left(x^2+x+1\right)\left(x^2-x+1\right)\)

Ta lại gặp may ở chỗ \(x^2\)nên dễ phân tích.

bạn ghi gì vậy mk ko hiểu

10 tháng 9 2018

Bạ xem bài làm của bạn Nguyễn Võ Thảo Vy ở đường link sau:

Câu hỏi của Nguyễn Desmond - Toán lớp 8 - Học toán với OnlineMath

TL

Bn xem bài của Nguyễn Thảo Vy ở quản lí đã đưa ra nha

Hok tốt nghen

Nhớ k mik nha