K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2021

Câu đề HN vừa thi hôm trước, sửa thành tìm max

Áp dụng BĐT Bunyakovsky ta có:

\(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)\)

\(=6\left(a+b+c\right)\le6\) 

\(\Rightarrow\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\le\sqrt{6}\)

Dấu "=" xảy ra khi a = b = c = 1/3

Làm xong mới thấy không giống lắm hihi:D

11 tháng 1 2021

BĐT quen thuộc:

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\)

\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)  => Bunyakovsky dạng phân thức

\(\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

Dấu "=" xảy ra khi: a=b=c

12 tháng 1 2021

Gọi vận tốc bè gỗ là v1 (km/h) (v1 > 0)

=> Vận tốc thuyền : v1 + 4 km/h (v1 + 4 > 0)

Đổi : 3 giờ 20 phút = 10/3 giờ

Ta có v1.10/3 + v1.\(\frac{10}{v_1+4}\) = (v1 + 4).\(\frac{10}{v_1+4}\) (= 10)

=> v1.10/3 + v1.\(\frac{10}{v_1+4}\) = v1.\(\frac{10}{v_1+4}\)+ 4\(\frac{10}{v_1+4}\)

=> \(\frac{v_1.10}{3}=\frac{40}{v_1+4}\)

=> 3.40 = (v1+ 4).v1.10

=> (v1 + 4).v1 = 12

=> (v1)2 + 4.v1 - 12 = 0

=> (v1 + 2)(v1 - 6) = 0

=> \(\orbr{\begin{cases}v_1+2=0\\v_1-6=0\end{cases}}\Rightarrow\orbr{\begin{cases}v_1=-2\left(\text{loại}\right)\\v_1=6\left(tm\right)\end{cases}}\)

Vậy vận tốc của bè là 6km/h

11 tháng 1 2021

+) Áp dụng bất đẳng thức Cauchy-Schwarz, ta được: \(A=\sqrt{7-x}+\sqrt{2+x}\le\sqrt{2\left(7-x+2+x\right)}=3\sqrt{2}\)

Đẳng thức xảy ra khi \(7-x=2+x\Leftrightarrow x=\frac{5}{2}\)

+) \(A=\sqrt{7-x}+\sqrt{2+x}\Rightarrow A^2=9+2\sqrt{\left(7-x\right)\left(2+x\right)}\ge9\Rightarrow A\ge3\)

Đẳng thức xảy ra khi \(\left(7-x\right)\left(2+x\right)=0\Leftrightarrow\orbr{\begin{cases}x=7\\x=-2\end{cases}}\)

Vậy \(MinA=3\Leftrightarrow x\in\left\{7;-2\right\};MaxA=3\sqrt{2}\Leftrightarrow x=\frac{5}{2}\)

NM
10 tháng 1 2021

bài 1 ta có 

\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(2020a+2021b\right)\ge\left(\sqrt{2020}+\sqrt{2021}\right)^2\)  ( BDT Bunhia )

do đó

\(a+b=ab.\left(\frac{1}{a}+\frac{1}{b}\right)\ge\left(\frac{1}{a}+\frac{1}{b}\right)\left(2020a+2021b\right)\ge\left(\sqrt{2020}+\sqrt{2021}\right)^2\)

vậy ta có đpcm.

bài 2.

ta có \(VT=\sqrt{x-3}+\sqrt{5-x}\le2\)( BDT Bunhia )

\(VP=y^2+2.\sqrt{2019}y+2021=\left(y+\sqrt{2019}\right)^2+2\ge2\)

suy ra PT có nghiệm \(\hept{\begin{cases}x-3=5-x\\y+\sqrt{2019}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=-\sqrt{2019}\end{cases}}}\)

DD
7 tháng 1 2021

Bạn tham khảo câu hỏi tương tự ở link: https://olm.vn/hoi-dap/detail/332134284249.html 

Mình đã trả lời trong đó rồi đó ạ. 

7 tháng 1 2021
  1. Kkksmmxkidmfnjf is the only one ☝️ can have the same name for the only one ☝️ in his life that I am going on a different time for a few days to see him and he has a little time in my mind and the rest up ⬆️ and the rest of the family I love 💗 to see the kids iriiriiriiiiio
  2. iiiiirioeookdmdmfj and I am going to go 
DD
7 tháng 1 2021

Phương trình tọa độ giao điểm giữa \(\left(d\right)\)và \(\left(P\right)\)là: 

\(x^2=mx-m+1\)

\(\Leftrightarrow x^2-mx+m-1=0\)(*)

Để \(\left(d\right)\)và \(\left(P\right)\)cắt nhau tại hai điểm phân biệt thì (*) có hai nghiệm phân biệt \(x_1,x_2\).

\(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>0\Leftrightarrow m\ne2\).

Theo định lí Viete: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\).

\(P=\frac{2x_1x_2+3}{x_1^2+x_2^2+2\left(x_1x_2+1\right)}=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{2\left(m-1\right)+3}{m^2+2}=\frac{2m+1}{m^2+2}\)

mik chịu