Cho 1 góc xBy ,từ A trên tia Bx (Akhác B) vẽ AH vuông góc với By(H thuộc By) và kẻ AD vuông góc với phân giác góc xBy tại D .Cho O là tâm của đường tròn đường kính AB .Chứng minh:OD vuông góc AH.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


mỗi lượt cả hai người bốc nhiều nhất là 1+4 =5 que. Do đó để chắc thắng ta phải bốc được que thứ 25, 20, 15, 10,5.
Vậy để chắc thắng ta bốc sau và bốc cho được que thứ 5 , sau đó bốc số que bằng hiệu của 5 với số que người kia bốc.
Giải: mỗi lượt cả hai người bốc nhiều nhất là 1+4 =5 que. Do đó để chắc thắng ta phải bốc được que thứ 25, 20, 15, 10,5.
Vậy để chắc thắng ta bốc sau và bốc cho được que thứ 5 , sau đó bốc số que bằng hiệu của 5 với số que người kia bốc.

Trục căn thức ở mẫu, ta có:
\(\frac{1}{\sqrt{k}+\sqrt{k+1}}=\frac{\sqrt{k+1}-\sqrt{k}}{k+1-k}=\sqrt{k+1}-\sqrt{k}\)
Từ đó ta được:
\(y=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}=\sqrt{100}-\sqrt{1}=9\)

Ở đây có 5 số đều là số nguyên tố: p, p+6, p + 8, p+12, p+14. Ta thử làm phép chia cho 5 xem số dư của chúng là bao nhiêu?
Viết lại 5 số như sau:
p ; p + 5 + 1; p + 5 + 3; p + 10 + 2; p + 10 + 4
=> Trong 5 số trên bao giờ cũng có 1 số chia hết cho 5, 1 số chia cho 5 dư 1; 1 số chia 5 dư 2; 1 số chia 5 dư 3; 1 số chia 5 dư 4.
=> Vậy để chúng đều là số nguyên tố thì p = 5 (vì số 5 là số chia hết cho 5 duy nhất và là số nguyên tố).
Khi đó 5 số trong đầu bài là:
5; 5 + 5 + 1 = 11; 5 + 5 + 3 = 13; 5 + 10 + 2 = 17; 5 + 10 + 4 = 19
đều là số nguyên tố
Ở đây có 5 số đều là số nguyên tố: p, p+6, p + 8, p+12, p+14. Ta thử làm phép chia cho 5 xem số dư của chúng là bao nhiêu?
Viết lại 5 số như sau:
p ; p + 5 + 1; p + 5 + 3; p + 10 + 2; p + 10 + 4
=> Trong 5 số trên bao giờ cũng có 1 số chia hết cho 5, 1 số chia cho 5 dư 1; 1 số chia 5 dư 2; 1 số chia 5 dư 3; 1 số chia 5 dư 4.
=> Vậy để chúng đều là số nguyên tố thì p = 5 (vì số 5 là số chia hết cho 5 duy nhất và là số nguyên tố).
Khi đó 5 số trong đầu bài là:
5; 5 + 5 + 1 = 11; 5 + 5 + 3 = 13; 5 + 10 + 2 = 17; 5 + 10 + 4 = 19
đều là số nguyên tố

\(\sqrt{6+\sqrt{6+\sqrt{6}}}+\sqrt{2+\sqrt{2+\sqrt{2}}}\)
\(< \sqrt{6+\sqrt{6+\sqrt{9}}}+\sqrt{2+\sqrt{2+\sqrt{4}}}=3+2=5\)