Tìm x, y, z thỏa mãn phongw trình:
\(x+y+z-2009=2\sqrt{x-19}+4\sqrt{y-7}+6\sqrt{z-1997}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước hết chứng minh \(\sqrt[3]{2}\) là một số vô tỉ.
Ta giả sử \(\sqrt[3]{2}\)hữu tỉ thì luôn tồn tại các số nguyên \(m,n\ne0\)sao cho \(\left(m,n\right)=1\)và \(\sqrt[3]{2}=\frac{m}{n}\)(1)
Suy ra \(\frac{m^3}{n^3}=2\)\(\Rightarrow\)\(m^3=2n^3\)\(\Rightarrow\)\(m^3\)chia hết cho \(n^3\)
Gọi \(k\)là 1 ước nguyên tố nào đó của \(n\)thế thì \(m^3\)chia hết cho \(k\)do đó \(m\)chia hết cho \(k\)
Như vậy \(k\)là ước nguyên tố của \(m\)và \(n\), trái với \(\left(m,n\right)=1.\)Vậy \(\sqrt[3]{2}\) là một số vô tỉ.
Ta quay trở lại giải bài toán trên:
Giả sử tồn tại các số hữu tỉ p, q, r với \(r>0\)sao cho \(\sqrt[3]{2}=p+q\sqrt{r}.\)Khi đó \(p\)và \(q\)không đồng thời bằng 0.
Ta có \(2=\left(p+q\sqrt{r}\right)^3=p^3+3p^2q\sqrt{r}+3pq^2r+q^3r\sqrt{r}\)
\(\Rightarrow\)\(2-p^3-3pq^2r=3p^2q\sqrt{r}+q^3r\sqrt{r}=q\left(3p^2+q^2r\right)\sqrt{r}\)(*)
- Nếu \(q\left(3p^2+q^2r\right)=0\)thì \(q=0\)\(\Rightarrow\)\(p=\sqrt[3]{2},\)vô lý.
- Nếu \(q\left(3p^2+q^2r\right)\ne0\)thì (*) \(\Leftrightarrow\)\(\sqrt{r}=\frac{2-p^3-3pq^2r}{q\left(3p^2+q^2r\right)}\)
Do đó \(\sqrt[3]{2}=p+q\sqrt{r}\)là một số hữu tỉ (mâu thuẫn).
Vậy ta có đpcm.
Do \(n\in N^{\text{*}}\) \(\left(o\right)\) nên ta dễ dàng suy ra \(2+2\sqrt{28n^2+1}\in Z^+\)
Do đó, \(2\sqrt{28n^2+1}\in Z^+\) dẫn đến \(\sqrt{28n^2+1}\in Q\)
Lại có: \(28n^2+1\) luôn là một số nguyên dương (do \(\left(o\right)\)) nên \(\sqrt{28n^2+1}\in Z^+\)
hay nói cách khác, ta đặt \(\sqrt{28n^2+1}=m\) (với \(m\in Z^+\) )
\(\Rightarrow\) \(28n^2+1=m^2\) \(\left(\alpha\right)\)
\(\Rightarrow\) \(m^2-1=28n^2\) chia hết cho \(4\)
Suy ra \(m^2\text{ ≡ }1\) \(\left(\text{mod 4}\right)\)
Hay \(m\) phải là một số lẻ có dạng \(m=2k+1\) \(\left(k\in Z^+\right)\)
Từ \(\left(\alpha\right)\) suy ra \(28n^2=\left(2k+1\right)^2-1=4k\left(k+1\right)\)
nên \(7n^2=k\left(k+1\right)\)
Theo đó, ta có: \(\orbr{\begin{cases}k\\k+1\end{cases}\text{chia hết cho 7}}\)
Xét hai trường hợp sau:
\(\text{Trường hợp 1}:\)\(k=7q\) \(\left(q\in Z^+\right)\)
Suy ra \(7n^2=7q\left(7q+1\right)\)
\(\Rightarrow\) \(n^2=q\left(7q+1\right)\) \(\left(\beta\right)\)
Mặt khác, vì \(\left(q,7q+1\right)=1\) nên từ \(\left(\beta\right)\) suy ra \(\hept{\begin{cases}q=a^2\\7q+1=b^2\end{cases}\Rightarrow}\) \(7a^2+1=b^2\) \(\left(\gamma\right)\)
Tóm tại tất cả điều trên, ta có:
\(A=2+2\sqrt{28n^2+1}=2+2m=2+2\left(2k+1\right)=4+4.7q=4+28q\)
Khi đó, \(A=4+28a^2=4\left(7a^2+1\right)=4b^2\) (do \(\left(\gamma\right)\) )
Vậy, \(A\) là số chính phương với tất cả các điều kiện nêu trên
\(\text{Trường hợp 2:}\)\(k+1=7q\)
Tương tự
pt<=> \(x^4+2x^2+1-2x+2x^3=\left(x^2+1\right)\sqrt{x-x^3}\)
<=> \(\left(x^2+1\right)^2-2\left(x-x^3\right)=\left(x^2+1\right)\sqrt{x-x^3}\)
đặt \(x^2+1=a\left(a\ge1\right)\) và \(\sqrt{x-x^3}=b\left(b\ge0\right)\) thì ta có pt
\(a^2-2b^2=ab\)
<=> \(a^2-ab-2b^2=0\)
<=> \(a^2+ab-2ab-2b^2=0\)
<=> \(a\left(a+b\right)-2b\left(a+b\right)=0\)
<=> \(\left(a-2b\right)\left(a+b\right)=0\)
<=> \(\orbr{\begin{cases}a=2b\\a+b=0\end{cases}}\)
TH1: \(a\ge1;b\ge0=>a+b\ne0\)
TH2: \(a=2b\)
<=>\(x^2+1=2\sqrt{x-x^3}\)
<=> \(x^4+2x^2+1=4x-4x^3\)
<=> \(x^4+4x^3+2x^2-4x+1=0\)
đây là pt đối xứng nên ta thấy x=0 ko là nghiệm của pt nên chia 2 vế cho x^2 ta có
\(x^2+4x+2-\frac{4}{x}+\frac{1}{x^2}=0\)
đặt \(x-\frac{1}{x}=y\)thì \(x^2+\frac{1}{x^2}=y^2+2\)
khi đó pt trên trở thành
\(y^2+2+4y+2=0\)
<=> \(y^2+4y+4=0\)
<=>\(\left(y+2\right)^2=0\)
<=> \(y=-2\)
đến đây bạn tự thay vào giải nốt tìm x nha
t
đặt \(\sqrt{x^2-x+1}=a\)
và \(\sqrt{x-2}=b\)
==> \(x^2-6x+11=a^2-5b^2\)
và \(x^2-4x+7=a^2-3b^2\)
khi đó pt trên trở thành \(a\left(a^2-5b^2\right)=2b\left(a^2-3b^2\right)\)
<=>\(a^3-5ab^2=2a^2b-6ab^2\)
<=> \(a^3-5ab^2+4a^2b-6a^2b+6b^3=0\)
<=> \(a\left(a^2+4ab-5b^2\right)-6b\left(a^2-b^2\right)=0\)
<=>\(a\left(a-b\right)\left(a+5b\right)-6b\left(a-b\right)\left(a+b\right)=0\)
<=> \(\left(a-b\right)\left(a^2+5ab-6ab-6b^2\right)=0\)
<=> \(\left(a-b\right)\left(a^2-ab-6b^2\right)=0\)
<=> \(\orbr{\begin{cases}a=b\\a^2-ab-6b^2=0\end{cases}}\)
đến đây bạn tự giải nốt nhé
<=>
\(2< \sqrt{6}< 3.\)
\(2< \sqrt{6+2}< \sqrt{6+\sqrt{6}}< \sqrt{6+3}=3\)
\(2< \sqrt{6+2}< \sqrt{6+\sqrt{6+\sqrt{6}}}< \sqrt{6+3}=3\)
...
\(2< \sqrt{6+2}< \sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}< \sqrt{6+3}=3\)
Vậy phần nguyên của \(A=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}\)là 2
Ta co : \(\sqrt{6}\)> \(\sqrt{4}\)= 2
\(\sqrt{6}\)<\(\sqrt{9}\)= 3
=> \(\sqrt{6+\sqrt{6}}\)<\(\sqrt{9}\)=3
=> \(\sqrt{6+\sqrt{6+\sqrt{6+...}}}\)<\(\sqrt{36}\)= 6
=> 2 < A < 3
=> phan nguyen cua A la 2
đặt \(\sqrt{x^2+2016}=y\left(y\ge0\right)\) =>\(2016=y^2-x^2\)
khi đó pt trên trở thành
\(x^4+y=y^2-x^2\)
<=> \(\left(x^4-y^2\right)+\left(x^2+y\right)=0\)
<=>\(\left(x^2+y\right)\left(x^2-y\right)+\left(x^2+y\right)=0\)
<=>\(\left(x^2+y\right)\left(x^2-y+1\right)=0\)
<=>\(\orbr{\begin{cases}x^2+y=0\left(loai\right)\\x^2=y-1\end{cases}}\)
với x^2=y-1 thì ta có pt \(x^2=\sqrt{x^2+2016}-1\)
<=>\(\left(\sqrt{x^2+2016}+\frac{1}{2}\right)^2=\frac{8061}{4}\)
đến đây bạn tự giải nốt nha
\(\sqrt{1-xy}=\frac{\sqrt{1-xy}.x^2y^2}{x^2y^2}\)\(=\frac{\sqrt{x^4y^4-x^5y^5}}{x^2y^2}\)
có: \(x^5+y^5=2x^2y^2\Rightarrow x^2y^2=\frac{x^5+y^5}{2}\)
\(\frac{\sqrt{x^4y^4-x^5y^5}}{x^2y^2}=\frac{\sqrt{\left(\frac{x^5+y^5}{2}\right)^2-x^5y^5}}{x^2y^2}=\frac{\sqrt{\left(x^5-y^5\right)^2}}{2x^2y^2}=\frac{\left|x^5-y^5\right|}{2x^2y^2}\)
Do x, y hữu tỉ nên \(\frac{\left|x^5-y^5\right|}{2x^2y^2}\)hữu tỉ (đpcm)
<=>\(\left(x-19\right)-2\sqrt{x-19}+1+\left(y-7\right)+4\sqrt{y-7}+4\)+\(+\left(z-1997\right)-6\sqrt{z-1997}+9=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-19}=1\\\sqrt{y-7}=2\\\sqrt{z-1997}=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=20\\y=11\\z=2006\end{cases}}}\)
vay...
\(\Leftrightarrow\left(x-19\right)2\sqrt{x-19}+1+\left(y-7\right)+4+\left(z-1997\right)+9=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-19}=1\\\sqrt{y-7}=2\\\sqrt{z-1997}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=20\\y=11\\z=2006\end{cases}}\)
Chúc bạn học tốt!