K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2021

a, Vì A(1;-3) năm trên đường thẳng (d) khi tọa độ điểm B thỏa mãn phương trình đường thẳng (d) 

Thay x = 1 ; y = -3 vào (d) phương trình tương đương 

\(-3=5-3m+1\Leftrightarrow4-3x=-3\Leftrightarrow-3x=-7\Leftrightarrow x=\frac{7}{3}\)

b ; c thiếu đề 

23 tháng 4 2021

Bài 2 : 

Vì y = x + 5 có tung độ là 2 

=> y = 2 + 5 = 7 

Vậy y = ( 2m - 5 )x - 5m đi qua đường thẳng y = x + 5 A( 2 ; 7 ) 

Thay x = 2 ; y = 7 vào y = ( 2m - 5 )x - 5m ta được : 

\(7=\left(2m-5\right)2-5m\Leftrightarrow4m-10-5m=7\Leftrightarrow-m=17\Leftrightarrow m=-17\)

26 tháng 5 2021

Ta có \(\frac{4\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}=\frac{4\left(x-1\right)}{\left(\sqrt{x}-1\right)^3}=\frac{4\left(x-1\right)}{\left(x-1\right)\left(\sqrt{x}-1\right)}=\frac{4}{\sqrt{x}-1}\)(đkxđ x khác 1)

Để \(\frac{4\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\)nhận gt nguyên suy ra \(\frac{4}{\sqrt{x}-1}\inℤ\)

\(\Rightarrow4⋮\sqrt{x}-1\)

\(\Rightarrow\left(\sqrt{x}-1\right)\inƯ\left(4\right)\)

\(\Rightarrow\left(\sqrt{x}-1\right)\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{2;0;3;-1;5;-3\right\}\)

\(\Rightarrow x\in\left\{4;0;9;1;25\right\}\)mà x khác 1

\(\Rightarrow x\in\left\{4;0;9;25\right\}\)

26 tháng 5 2021

Thử lại ta thấy x=25 không thỏa mãn 

Vậy \(x\in\left\{0;4;9\right\}\)

20 tháng 5 2021

A B C O E F D H M I G T

Lấy điểm G trên CF sao cho AG vuông góc với AC.

Ta có ^MAE = ^ACB = ^AFE => AM là tiếp tuyến của (AEF) => \(ME.MF=AM^2\Rightarrow\frac{ME}{MF}=\frac{AM^2}{MF^2}=\frac{AE^2}{AF^2}\)

Áp dụng định lí Thales, ta có: \(\frac{IH}{IE}.\frac{ME}{MF}.\frac{GF}{GH}=\frac{AC}{AE}.\frac{AE^2}{AF^2}.\frac{AF}{AB}=\frac{AC}{AB}.\frac{AE}{AF}=1\)

Theo định lí Menelaus thì 3 điểm G,I,M thẳng hàng

Dễ thấy AIHG là hình bình hành => IG chia đôi AH. Hay MI chia đôi AH. Vậy T là trung điểm AH.

Alex, Billy, Colin, Duncan và Eddie là 5 tên cướp biển được sắp xếp theo thứ tự từ già đến trẻ. Chúng có 100 đồng tiền vàng.Trên tàu, chúng quyết định chia số tiền đó theo cách:Tên cướp nhiều tuổi nhất, Alex, đề ra quy tắc chia. Tất cả bọn chúng, bao gồm chính Alex, bỏ phiếu.Nếu ít nhất 50% số tên cướp đồng ý, số tiền sẽ được chia theo cách đó. Nếu không, Alex sẽ bị ném xuống...
Đọc tiếp

Alex, Billy, Colin, Duncan và Eddie là 5 tên cướp biển được sắp xếp theo thứ tự từ già đến trẻ. Chúng có 100 đồng tiền vàng.

Trên tàu, chúng quyết định chia số tiền đó theo cách:

Tên cướp nhiều tuổi nhất, Alex, đề ra quy tắc chia. Tất cả bọn chúng, bao gồm chính Alex, bỏ phiếu.

Nếu ít nhất 50% số tên cướp đồng ý, số tiền sẽ được chia theo cách đó. Nếu không, Alex sẽ bị ném xuống biển. 

Tên nhiều tuổi nhất trong số những kẻ còn sống sót lại tiếp tục đề xuất và bỏ phiếu theo nguyên tắc cũ. Chúng lặp lại quy trình này cho đến khi một cách chia được chấp nhận.

Bọn cướp biển đều là những kẻ tham lam, tàn bạo. Tất nhiên, chúng không muốn chết.

Vậy, chuyện gì sẽ xảy ra và kẻ đề xuất đầu tiên nên đặt quy tắc như thế nào để hắn được lợi nhất?

1
1 tháng 5 2021

3 tên cướp thì tôi làm đc còn 5 tên thì thôi

15 tháng 4 2021

These shose're both beautiful and affordable - I can't make ______________  mind

A.in

B.on

C.up

D.with

* Chọn C , make up mind : quyết định

These shose're both beautiful and affordable - I can't make       mind

A.in

B.on

C.up

D.with

15 tháng 4 2021

a) Δ' = b'2 - ac = [-(n-1)]2 - 2n + 3

= n2 - 2n + 1 - 2n + 3

= n2 - 4n + 4 = ( n - 2 )2 ≥ 0 ∀ n

hay pt luôn có nghiệm ∀ n (đpcm)

b) Theo Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2n-2\\x_1x_2=\frac{c}{a}=2n-3\end{cases}}\)

Khi đó P = x12 + x22 = ( x1 + x2 )2 - 2x1x2

= ( 2n - 2 )2 - 2( 2n - 3 )

= 4n2 - 8n + 4 - 4n + 6

= 4n2 - 12n + 10

= ( 2n - 3 )2 + 1 ≥ 1 ∀ n

Dấu "=" xảy ra <=> n = 3/2 . Vậy MinP = 1

1 tháng 6 2015

a, O là tâm đường tròn nội tiếp nên AO là đường trung trực của tam giác ABC. Tam giác ABC cân tại A nên AO cũng là đường phân giác của góc A.

b, Tamm giác ABK và tam giác ADB có: Góc A chung; AKB = ABD vì chắn hai cung bằng nhau AB  và AC. Suy ra tam giác ABK đồng dạng với tam giác ADB. Suy ra\(\frac{AB}{AK}=\frac{AD}{AB}\)suy ra AB2=AD.AK

15 tháng 4 2021

a, \(\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}}=\sqrt{\frac{6a^2}{24}}=\sqrt{\frac{a^2}{4}}=\left|\frac{a}{2}\right|=\frac{a}{2}\)

do \(a\ge0\)

b, \(\sqrt{13a}.\sqrt{\frac{52}{a}}=\sqrt{\frac{676a}{a}}=\sqrt{676}=26\)

c, \(\sqrt{5a}.\sqrt{45a}-3a=\sqrt{225a^2}-3a=\left|15a\right|-3a\)

\(=15a-3a=12a\)do a > 0 

d, \(=\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^2}\)

\(=\left(3-a\right)^2-\sqrt{36a^2}=\left(3-a\right)^2-\left|6a\right|\)

Với \(a\ge0\Rightarrow\left(3-a\right)^2-6a=a^2-6a+9-6a=a^2-12a+9\)

Với \(a< 0\Rightarrow\left(3-a\right)^2+6a=a^2-6a+9+6a=a^2+9\)

15 tháng 4 2021

a) Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

c) Do a ≥ 0 nên bài toán luôn xác định. Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

 
 

d) Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9
 
15 tháng 4 2021

Khai phương tích 12.30.40 được:

(A) 1200 ;           (B) 120 ;            (C) 12 ;             (D) 240.

Chọn B

15 tháng 4 2021

Khai phương tích 12.30.40 (=12.12.10.10) ta được 12.10= 120 (Chọn B)