K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2016

+) Với \(x< 0\)chọn \(x_1< x_2< 0\), ta có : 

\(f\left(x_1\right)-f\left(x_2\right)=\left(x_1^4-x_2^4\right)+2\left(x_1^2-x_2^2\right)=\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2+2\right)\)

Vì \(x_1< x_2< 0\) nên \(\hept{\begin{cases}x_1-x_2< 0\\x_1+x_2< 0\end{cases}}\) và \(x_1^2+x_2^2+2>0\)

Suy ra \(\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2+2\right)>0\)

\(\Rightarrow\hept{\begin{cases}x_1< x_2< 0\\f\left(x_1\right)>f\left(x_2\right)\end{cases}}\) => Hàm số nghịch biến.

+) Tương tự, với \(x\ge0\)ta chọn \(x_2>x_1\ge0\) thì ta có \(\hept{\begin{cases}x_1-x_2< 0\\x_1+x_2\ge0\end{cases}}\) và \(x_1^2+x_2^2+2>0\)

Suy ra \(\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2+2\right)< 0\)

\(\Rightarrow\hept{\begin{cases}x_2>x_1\ge0\\f\left(x_2\right)>f\left(x_1\right)\end{cases}}\) => Hàm số đồng biến.

26 tháng 10 2016

Gọi \(A=\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{5}+\sqrt{7}}+...+\frac{1}{\sqrt{97}+\sqrt{99}}\)

\(\Rightarrow2A=\frac{2}{\sqrt{1}+\sqrt{3}}+\frac{2}{\sqrt{5}+\sqrt{7}}+...+\frac{2}{\sqrt{97}+\sqrt{99}}\)

\(=\frac{\left(\sqrt{3}\right)^2-\left(\sqrt{1}\right)^2}{\sqrt{3}+\sqrt{1}}+...+\frac{\left(\sqrt{99}\right)^2-\left(\sqrt{97}\right)^2}{\sqrt{99}+\sqrt{97}}\)

\(=\sqrt{3}-\sqrt{1}+\sqrt{5}-\sqrt{3}+...+\sqrt{99}-\sqrt{97}\)

\(=\sqrt{99}-1\)

Vậy \(A=\frac{\sqrt{99}-1}{2}=\frac{2\sqrt{99}-2}{4}>\frac{9}{4}\)

24 tháng 10 2016

\(\hept{\begin{cases}x^2-xy-6y^2-2x+11y-3=0\left(1\right)\\x^2+y^2=5\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow\left(x-3y+1\right)\left(x+2y-3\right)=0\)

  • Nếu \(x-3y+1=0\Rightarrow x=-1+3y\) thay vào (2) ta được:

\(\left(-1+3y\right)^2+y^2=0\Rightarrow10y^2-6y+1=0\)

\(\Delta=\left(-6\right)^2-4\left(10\cdot1\right)=-4< 0\)(vô nghiệm)

  • Nếu \(x+2y-3=0\Rightarrow x=3-2y\)thay vào (2) ta được:

\(\left(3-2y\right)^2+y^2=0\)\(\Rightarrow5y^2-12y+9=0\)

\(\Delta=\left(-12\right)^2-4\left(5\cdot9\right)=-36< 0\)(vô nghiệm)

Vậy hpt trên vô nghiệm

24 tháng 10 2016

gio qua

24 tháng 10 2016

\(\hept{\begin{cases}x^2+2xy+2y^2+3x=0\left(1\right)\\xy+y^2+3y+1=0\left(2\right)\end{cases}}\)

Lấy pt (1)+2*pt (2) ta được:

\(\left(x+2y\right)^2+3\left(x+2y\right)+2=0\)

\(\Leftrightarrow\left(x+2y+1\right)\left(x+2y+2\right)=0\)

  • Nếu \(x+2y+1=0\Rightarrow x=-2y-1\)thay vào (2) ta được:

\(y^2-2y-1=0\)\(\Rightarrow\orbr{\begin{cases}y=1+\sqrt{2}\\y=1-\sqrt{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3-2\sqrt{2}\\x=-3+2\sqrt{2}\end{cases}}\)

  • Nếu \(x+2y+2=0\Rightarrow x=-2y-2\) thay vào (2) ta được:

\(y^2-y-1=0\Rightarrow\orbr{\begin{cases}y=\frac{1-\sqrt{5}}{2}\\y=\frac{1+\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3+\sqrt{5}\\x=-3-\sqrt{5}\end{cases}}\)

Vậy hpt có 4 nghiệm (x;y) là : \(\left(-3-2\sqrt{2};1+\sqrt{2}\right);\left(-3+2\sqrt{2};1-\sqrt{2}\right)\)\(;\left(-3+\sqrt{5};\frac{1-\sqrt{5}}{2}\right);\left(-3-\sqrt{5};\frac{1+\sqrt{5}}{2}\right)\)

24 tháng 10 2016

a)Tứ giác AEHF là hình chữ nhật vì có 3 góc vuông \(\Rightarrow\widehat{HAF}=\widehat{EFA}\)

\(\Rightarrow\widehat{OAC}=\widehat{OCA}\)

\(\Rightarrow\widehat{OCA}+\widehat{AFE}=90^0\)\(\Rightarrow OA\)vuông góc với EF

24 tháng 10 2016

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) , ta được : 

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{4}{2a}=\frac{2}{a}\)

Cộng các BĐT trên theo vế : \(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Dấu "=" xảy ra khi a = b = c => Tam giác đó là tam giác đều.

24 tháng 10 2016

Cho a,b.c là 3 cạnh 1 tam giác. CMR: 1 / a+b−c + 1 / b+c−a + 1 / c+a−b ≥ 1 / a +1 / b +1 / c 

Áp dụng BĐT 1 / x +1 / y ≥ 4 / x+y  , ta được : 

1 / a+b−c + 1 / b+c−a ≥ 4 / 2b = 2 / b 

1 / b+c−a +1 / c+a−b ≥ 4 / 2c = 2 / c 

1 / a+b−c +1 / c+a−b ≥ 4 / 2a = 2 / a 

Cộng các BĐT trên theo vế : 2( 1 / a+b−c + 1 / b+c−a + 1 / c+a−b ) ≥ 2( 1 / a + 1 / b + 1 / c )

⇒ 1 / a+b−c + 1 / b+c−a + 1 / c+a−b  ≥ 1 / a + 1 / b + 1 / c 

Dấu "=" xảy ra khi a = b = c => Tam giác đó là tam giác đều.

24 tháng 10 2016

Giả thiết của dề bài chưa đúng, mình sửa lại thành \(cosA+cosB+cosC=\sqrt{cosA.cosB}+\sqrt{cosB.cosC}+\sqrt{cosC.cosA}\)

Đặt \(a=\sqrt{cosA},b=\sqrt{cosB},c=\sqrt{cosC}\)

Suy từ giả thiết : 

\(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a=b=c\\a,b,c>0\end{cases}}\)

Vậy ta có \(\sqrt{cosA}=\sqrt{cosB}=\sqrt{cosC}\Rightarrow\hept{\begin{cases}cosA=cosB=cosC\\\widehat{A}+\widehat{B}+\widehat{C}=180^o\end{cases}}\)

\(\Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=60^o\)

\(\Rightarrow\Delta ABC\) là tam giác đều.

24 tháng 10 2016

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) ta được

\(\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2b}\ge\frac{9}{2\left(a+2b\right)}\)

\(\frac{1}{2b}+\frac{1}{2c}+\frac{1}{2c}\ge\frac{9}{2\left(b+2c\right)}\)

\(\frac{1}{2c}+\frac{1}{2a}+\frac{1}{2a}\ge\frac{9}{2\left(c+2a\right)}\)

Cộng các BĐT theo vế : 

\(\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{9}{2}\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)

Dấu "=" xảy ra khi a = b = c (a,b,c>0)

2 tháng 6 2018

The BĐT \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\). Thật vậy, ta có:

Áp dụng BĐT Bunhiacopxki, ta có:

\(\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2+\left(\frac{c}{\sqrt{z}}\right)^2\right]\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\)

\(\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\left(x+y+z\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\ge\frac{\left(a+b+c\right)^2}{x+y+z}\). Thay a,b,c bởi 1 , ta được

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{9}{x+y+z}\)

Áp dụng vào ta có: \(3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\ge3.\frac{9}{3a+3b+3c}=3.\frac{9}{3\left(a+b+c\right)}=3.\frac{3}{a+b+c}\)

\(=\frac{9}{a+b+c}\)(1)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{9}{a+b+c}\)(2)

Vì (1) bằng (2) nên ta có đpcm . Dấu = xảy ra khi và chỉ khi a=b=c (a,b,c > 0)

24 tháng 10 2016

Do x,y > 0 nên ta xét \(\frac{1}{A}=-\frac{1}{2}-\frac{1}{2xy}\)

Áp dụng bđt Cauchy ta có \(2xy\le x^2+y^2\Rightarrow\frac{1}{2xy}\ge\frac{1}{x^2+y^2}\Rightarrow-\frac{1}{2xy}\le-\frac{1}{x^2+y^2}\)

Từ đó suy ra \(\frac{1}{A}=-\frac{1}{2}-\frac{1}{2xy}\le-\frac{1}{2}-\frac{1}{x^2+y^2}=-\frac{1}{2}-1=-\frac{3}{2}\)

\(\Rightarrow A\ge-\frac{2}{3}\). Dấu "=" xảy ra khi \(x=y=\frac{\sqrt{2}}{2}\) (x,y>0)

Vậy giá trị nhỏ nhất của A bằng \(-\frac{2}{3}\) khi \(x=y=\frac{\sqrt{2}}{2}\)

24 tháng 10 2016

M A B C D I' K

Gọi \(I'\) là giao điểm của CD với (O) . CA và DB kéo dài cắt nhau tại K . Ta dễ dàng chứng minh được  K thuộc (O) và tam giác KCD vuông cân tại K. (1)

Trước tiên ta chứng minh \(C,M,D\) thẳng hàng :

Ta có \(\widehat{CMA}+\widehat{AMB}+\widehat{BMD}=45^o+90^o+45^o=180^o\) => C,M,D thẳng hàng. (2)

Xét trong (O) có : \(\widehat{I'MB}=\widehat{I'KB}=\frac{1}{2}\text{sđcung}BI'=45^o\) 

Từ đó suy ra được \(\hept{\begin{cases}KI'\perp CD\left(3\right)\\\text{ }I'\in\left(O\right)\left(\text{**}\right)\end{cases}}\)

Từ (1) và (3) suy ra \(I'\) là trung điểm của CD, mà I cũng là trung điểm của CD

\(\Rightarrow\hept{\begin{cases}I'\equiv I\\CI=ID\end{cases}}\) (*)

Từ (*) và (**) ta suy ra đpcm.

24 tháng 10 2016

thank you very much