giải và biện luận
\(\sqrt{x^2+a^2}=x+\frac{5a}{\sqrt{x^2+a^2}}\)
m.n ơi giúp mình với !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x#0
Ta có: \(T=8x^2-4x+\frac{1}{4x^2}+15\)
<=> \(T=\left(4x^2+\frac{1}{4x^2}\right)+\left(4x^2-4x+1\right)+14\)
Áp dụng BĐT \(a+\frac{1}{a}\ge2\)cho số a thuộc N*,ta có:
\(T\ge2+\left(2x-1\right)^2+14\)
=> Min T=16 khi và chỉ khi \(x=\frac{1}{2}\)
\(8x^2-4x+\frac{1}{4x^2}+15\)
\(=\left(4x^2-4x+1\right)+\left(4x^2-2+\frac{1}{4x^2}\right)+15-1+2\)
\(=4\left(x-\frac{1}{2}\right)^2+\left(2x-\frac{1}{2x}\right)^2+16\ge16\)
Vậy GTNN là 16 đạt được khi x = \(\frac{1}{2}\)
A B C D M N H I
Kẽ NI // BC
\(\Rightarrow\frac{DN}{DC}=\frac{AI}{AB}=\frac{AM}{AH}\)
\(\Rightarrow\)MI // BH
\(\Rightarrow\widehat{IMB}=\widehat{MBH}\left(1\right)\)
Tứ giác IBCN có
\(\widehat{IBC}=\widehat{BIN}=\widehat{BCN}\)
\(\Rightarrow\)Tứ giác IBCN là hình chữ nhật
\(\Rightarrow\widehat{NBC}=\widehat{BCI}\left(2\right)\)
Xét tứ giác IMCB có
\(\widehat{IMC}=90\)(vì IM // BH và BH vuông góc AC)\
\(\widehat{IBC}=90\)
\(\Rightarrow\)Tứ giác IMCB là tứ giác nội tiếp đường tròn
\(\Rightarrow\widehat{IMB}=\widehat{ICB}\left(3\right)\)(cùng chắn cung IB)
Từ (1),(2),(3) \(\Rightarrow\widehat{MBH}=\widehat{NBC}\)
\(\Rightarrow\widehat{BMC}=90-\widehat{MBH}=90-\widehat{NBC}=\widehat{CNB}\)
\(\Rightarrow\)Tứ giác MBCN nội tiếp đường tròn
Hay M,B,C,N cùng nằm trên một đường tròn
\(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\)
\(\Leftrightarrow a+b+c-3\sqrt[3]{abc}\ge0\)
\(\Leftrightarrow\left(\sqrt[3]{a}+\sqrt[3]{b}\right)^3+c-3\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}\right)-3\sqrt[3]{abc}\ge0\)
\(\Leftrightarrow\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}+\sqrt[3]{c^2}-\sqrt[3]{ab}-\sqrt[3]{bc}-\sqrt[3]{ac}\right)\ge0\)
Mà ta có \(\hept{\begin{cases}\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\ge0\\\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}+\sqrt[3]{c^2}-\sqrt[3]{ab}-\sqrt[3]{bc}-\sqrt[3]{ac}\right)\ge0\end{cases}}\)nên cái BĐT là đúng
Áp dụng BĐT trên , ta được : \(\frac{a+b+c+d}{2}=\frac{a+b}{2}+\frac{c+d}{2}\ge2\sqrt{\frac{\left(a+b\right)}{2}.\frac{\left(c+d\right)}{2}}\ge2\sqrt{\sqrt{ab}.\sqrt{cd}}=2\sqrt[4]{abcd}\)
\(\Leftrightarrow\frac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\) (*)
Từ (*) và (**) ta có : \(\frac{3d+d}{4}\ge\sqrt[4]{abcd}\Leftrightarrow d\ge\sqrt[4]{abcd}\Leftrightarrow d^4\ge abcd\Leftrightarrow d^3\ge abc\Leftrightarrow d\ge\sqrt[3]{abc}\)
hay \(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\) (đpcm)
Bạn tự xét dấu đẳng thức nhé!
Ta có: \(A=2013-xy\Leftrightarrow y=\frac{2013-A}{x}\)
Đặt \(2013-A=B\)thì ta có \(y=\frac{B}{x}\)(1)
Theo đề bài có
\(5x^2+\frac{y^2}{4}+\frac{1}{4x^2}=\frac{5}{2}\)
\(\Leftrightarrow5x^2+\frac{B^2}{4x^2}+\frac{1}{4x^2}=\frac{5}{2}\)
\(\Leftrightarrow20x^4-10x^2+B^2+1=0\)
Để PT có nghiệm (theo biến x2) thì \(\Delta\ge0\)
\(\Leftrightarrow5^2-20\left(B^2+1\right)\ge0\)
\(\Leftrightarrow B^2\le0,25\Leftrightarrow-0,5\le B\le0,5\)
\(\Leftrightarrow-0,5\le2013-A\le0,5\)
\(\Leftrightarrow2012,5\le A\le2013,5\)
Đạt GTLN khi \(\left(x,y\right)=\left(\frac{1}{2},-1;-\frac{1}{2},1\right)\)
Đạt GTNN khi \(\left(x;y\right)=\left(\frac{1}{2},1;-\frac{1}{2},-1\right)\)
Đường tròn O_1: Đường tròn qua E với tâm O Đoạn thẳng a: Đoạn thẳng [A, B] Đoạn thẳng b: Đoạn thẳng [O, A] Đoạn thẳng e: Đoạn thẳng [A, N] Đoạn thẳng f_1: Đoạn thẳng [H, N] Đoạn thẳng i_1: Đoạn thẳng [O, J] Đoạn thẳng j_1: Đoạn thẳng [J, B] Đoạn thẳng k_1: Đoạn thẳng [J, N] O = (-0.33, -2.81) O = (-0.33, -2.81) O = (-0.33, -2.81) Điểm A: Điểm trên O_1 Điểm A: Điểm trên O_1 Điểm A: Điểm trên O_1 Điểm B: Điểm trên O_1 Điểm B: Điểm trên O_1 Điểm B: Điểm trên O_1 Điểm M: Điểm trên a Điểm M: Điểm trên a Điểm M: Điểm trên a Điểm H: Giao điểm của d, b Điểm H: Giao điểm của d, b Điểm H: Giao điểm của d, b Điểm N: Giao điểm của O_1, d Điểm N: Giao điểm của O_1, d Điểm N: Giao điểm của O_1, d Điểm J: Giao điểm của O_1, h_1 Điểm J: Giao điểm của O_1, h_1 Điểm J: Giao điểm của O_1, h_1
Kéo dài AO cắt đường tròn (O) tại J, từ đó suy ra AJ là đường kính hay \(\widehat{ABJ}=\widehat{ANJ}=90^o\) .
Ta thấy ngay \(\Delta AMH\sim\Delta AJB\left(g-g\right)\Rightarrow\frac{AH}{AB}=\frac{AM}{AJ}\Rightarrow AH.AJ=AB.AM\) (không đổi).
Xét tam giác vuông ANJ, áp dụng hệ thức lượng ta có: \(AN^2=AH.AJ=AM.AB\) (không đổi)
Vậy AN luôn không đổi và \(AN=\sqrt{AM.AB}\).
Bảo Ngọc nhầm rồi nhé bạn.
Người ta có cho MD = ME = MB = MC đâu mà bạn kết luận 4 điểm đó cùng thuộc 1 đường tròn được
Có phải cát tuyến của hai đường tròn đi qua A không bạn nhỉ?
Ta có : \(a\left(x-b\right)\left(x-c\right)+b\left(x-c\right)\left(x-a\right)+c\left(x-a\right)\left(x-b\right)=0\)
\(\Leftrightarrow a\left[x^2-x\left(b+c\right)+bc\right]+b\left[x^2-x\left(c+a\right)+ac\right]+c\left[x^2-x\left(a+b\right)+ab\right]=0\)
\(\Leftrightarrow x^2\left(a+b+c\right)-2x\left(ab+ac+bc\right)+3abc=0\) (1)
Xét với a + b + c \(\ne\) 0 thì phương trình (1) có biệt số \(\Delta'=\left(ab+bc+ac\right)^2-3.\left(a+b+c\right).abc\)
\(=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)-3abc\left(a+b+c\right)\)
\(=a^2b^2+b^2c^2+c^2a^2-abc\left(a+b+c\right)\)
\(=\frac{a^2\left(b^2-2bc+c^2\right)+b^2\left(c^2-2ca+a^2\right)+c^2\left(a^2-2ab+b^2\right)}{2}\)
\(=\frac{a^2\left(b-c\right)^2+b^2\left(c-a\right)^2+c^2\left(a-b\right)^2}{2}\ge0\)
=> Phương trình (1) luôn có nghiệm trong trường hợp này.
Vậy phương trình ban đầu luôn có nghiệm với mọi a,b,c thỏa mãn \(a+b+c\ne0\)
Ta có : a (x−b)(x−c)+b(x−c)(x−a)+c(x−a)(x−b)=0
óa[x2−x(b+c)+bc]+b[x2−x(c+a)+ac]+c[x2−x(a+b)+ab]=0
óx2(a+b+c)−2x(ab+ac+bc)+3abc=0 (1)
Xét với a + b + c≠ 0 thì phương trình (1) có biệt số
Δ'=(ab+bc+ac)2−3.(a+b+c).abc
=a2b2+b2c2+c2a2+2abc(a+b+c)−3abc(a+b+c)=a2b2+b2c2+c2a2−abc(a+b+c)
=a2(b2−2bc+c2)+b2(c2−2ca+a2)+c2(a2−2ab+b2)2
a2(b−c)2+b2(c−a)2+c2(a−b)22 ≥0
=> Phương trình (1) luôn có nghiệm trong trường hợp này.
Vậy phương trình ban đầu luôn có nghiệm với mọi a,b,c thỏa mãn
\(\sqrt{x^2+a^2}=t>=IaI\); t^2=x^2+a^2
\(t-\frac{5a}{t}=x\) TH1. (x>=0 (*)
\(t^2-10a+\frac{25a^2}{t^2}=x^2=t^2-a^2\)
\(25a^2\cdot\left(\frac{1}{t}\right)^2+a^2-10a=0\)
\(t^2=\frac{25a^2}{10a-a^2}=0\)
\(x^2=\frac{25a}{\left(10-a\right)}-a^2\)
sau do Bien luan theo dk ton tai nghiem
x>=0; t>=IaI
TH2. x<0 (*) doi dau lai
Dai qua moi roi
cứ n hân chéo lên thôi bạn