chờ x,y,z là các số thực dương thỏa mãn xyz=1.CMR
\(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{x+z+1}\le1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chỉ hướng dẫn câu đại thôi nhé
Theo đề bài thì ta có hai giả thuyết sau
\(\hept{\begin{cases}x_1+y_1=x_2+y_2=...=x_{10}+y_{10}=10\\x_1+x_2+...+x_{10}=y_1+y_2+...+y_{10}\end{cases}}\)
Theo đề bài thì
\(x^2_1+x^2_2+...+x^2_{10}=y_1^2+y^2_2+...+y^2_{10}\)
\(\Leftrightarrow\left(x^2_1-y^2_1\right)+\left(x^2_2-y^2_2\right)+...+\left(x^2_{10}-y^2_{10}\right)=0\)
\(\Leftrightarrow10\left(x_1-y_1\right)+10\left(x_2-y_2\right)+...+\left(x_{10}-y_{10}\right)=0\)
\(\Leftrightarrow x_1+x_2+...+x_{10}-y_1-y_2-...-y_{10}=0\)ĐPCM
Đk:\(-1\le x\le3\) (chính là cái bài cho kia)
Nếu \(x=0\) thì \(A=\sqrt{3}\) ta sẽ chứng minh nó là GTNN của \(A\)
Tức là ta cần chứng minh
\(\sqrt{-x^2+2x+3}+\sqrt{3}\le\sqrt{-x^2+4x+12}\)
Sau khi bình phương 2 vế rồi rút gọn ta cần chứng minh
\(\sqrt{-3\left(x^2+2x+3\right)}\le x+3\)
Từ khi \(x+3>0\), ta cần chứng minh
\(3\left(-x^2+2x+3\right)\le\left(x+3\right)^2\Leftrightarrow x^2\ge0\) (Đúng)
Vậy \(A_{Min}=\sqrt{3}\Leftrightarrow x=0\)
Dự đoán khi \(a=b=c=\frac{1}{3}\) khi đó \(P=\frac{19}{27}\) (gọi P=biểu thức đầu bài)
Ta đi chứng minh nó là GTNN của P
\(\Leftrightarrow2\left(a^2b+b^2c+c^2a\right)+\left(a+b+c\right)\left(a^2+b^2+c^2\right)+4abc\ge\frac{19}{27}\left(a+b+c\right)^3\)
Khai triển và rút gọn, ta được BĐT tương đương là:
\(8\left(a^3+b^3+c^3\right)+24\left(a^2b+b^2c+c^2a\right)-30\left(ab^2+bc^2+ca^2\right)-6abc\ge0\)
\(\Leftrightarrow8\left(a+b+c\right)^3\ge54\left(ab^2+bc^2+ca^2+abc\right)\)
\(\Leftrightarrow ab^2+bc^2+ca^2+abc\le\frac{4}{27}\left(a+b+c\right)^3\)
BĐT trên đúng. Nên \(P_{Min}=\frac{19}{27}\Leftrightarrow a=b=c=\frac{1}{3}\)
\(\frac{a^{2009}-b^{2009}}{a^{2009}+b^{2009}}>\frac{a^{2008}-b^{2008}}{a^{2008}+b^{2008}}\)
\(\Leftrightarrow\left(a^{2009}-b^{2009}\right)\left(a^{2008}+b^{2008}\right)-\left(a^{2009}+b^{2009}\right)\left(a^{2008}-b^{2008}\right)>0\)
\(\Leftrightarrow a^{2009}b^{2008}-b^{2009}a^{2008}>0\)
\(\Leftrightarrow a^{2008}b^{2008}\left(a-b\right)>0\)(đúng vì \(a>b>0\))
Vậy \(\frac{a^{2009}-b^{2009}}{a^{2009}+b^{2009}}>\frac{a^{2008}-b^{2008}}{a^{2008}+b^{2008}}\)
\(\frac{a^{2009}-b^{2009}}{a^{2009}+b^{2009}}>\frac{a^{2008}-b^{2008}}{a^{2008}+b^{2008}}\)
Bài này là tìm GTLN của xyz đúng không?. Làm vậy nhé:
Ta có: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge2\)
\(\Rightarrow\frac{1}{x+1}\ge1-\frac{1}{y+1}+1-\frac{1}{z+1}=\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\left(1\right)\)
Tương tự ta có: \(\hept{\begin{cases}\frac{1}{y+1}\ge2\sqrt{\frac{zx}{\left(z+1\right)\left(x+1\right)}}\left(2\right)\\\frac{1}{z+1}\ge2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\left(3\right)\end{cases}}\)
Nhân (1), (2), (3) vế theo vế ta được:
\(\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
\(\Leftrightarrow xyz\le\frac{1}{8}\)
Vậy GTLN là \(xyz=\frac{1}{8}\)khi \(x=y=z=\frac{1}{2}\)
Ta có:
\(\hept{\begin{cases}x+y+xy=4\\x^2+xy-y=0\end{cases}}\)
Đề thấy \(x=-1\)không phải là nghiệm của hệ. Nên ta có
\(\Leftrightarrow\hept{\begin{cases}y=\frac{4-x}{x+1}\left(1\right)\\x^2+xy-y=0\left(2\right)\end{cases}}\)
Thế (1) vào (2) ta được: \(x^2+x.\frac{4-x}{x+1}-\frac{4-x}{x+1}=0\)
\(\Leftrightarrow x^3+5x-4=0\)
Tới đây thì bấm máy tính rồi thế ngược lại tìm được y nhé
Ta có: Điều kiện: \(\hept{\begin{cases}x+y\ge0\\x,y\ge-6\end{cases}}\)
\(x-\sqrt{x+6}=\sqrt{y+6}-y\)
\(\Leftrightarrow x+y=\sqrt{x+6}+\sqrt{y+6}\)
\(\Rightarrow P^2=\left(\sqrt{x+6}+\sqrt{y+6}\right)^2\le\left(1^2+1^2\right)\left(x+y+12\right)\)
\(\Rightarrow P^2\le2\left(P+12\right)\)
\(\Rightarrow P^2-2P-24\le0\)
\(\Rightarrow-4\le P\le6\)so sánh với điều kiện thì ta có
\(\Rightarrow0\le P\le6\left(1\right)\)
Ta lại có:
\(x+y=\sqrt{x+6}+\sqrt{y+6}\)
\(\Leftrightarrow P^2=\left(\sqrt{x+6}+\sqrt{y+6}\right)^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\)
\(\Leftrightarrow P^2=P+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\)
\(\Leftrightarrow P^2-P-12=2\sqrt{\left(x+6\right)\left(y+6\right)}\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}P\le-3\left(l\right)\\P\ge4\left(2\right)\end{cases}}\)
Từ (1) và (2) \(\Rightarrow4\le P\le6\)
Vậy GTNN là \(P=4\) khi \(\hept{\begin{cases}x=10\\y=-6\end{cases}or\hept{\begin{cases}x=-6\\y=10\end{cases}}}\)
GTLN là \(P=6\) khi \(x=y=3\)
Ha ~! Vẫn còn sót bài này
\(BDT\Leftrightarrow\frac{1-a}{1+a}+\frac{1-b}{1+b}+2\sqrt{\frac{\left(1-a\right)\left(1-b\right)}{\left(1+a\right)\left(1+b\right)}}\)
\(\le\frac{1-a-b}{1+a+b}+1+2\sqrt{\frac{1-a-b}{1+a+b}}\)
Và \(\frac{2\left(1-ab\right)}{1+ab+a+b}+2\sqrt{\frac{1+ab-a-b}{1+ab+a+b}}\)\(\le\frac{2}{1+a+b}+2\sqrt{\frac{1-a-b}{1+a+b}}\)
Đặt \(\hept{\begin{cases}u=ab\\v=a+b\end{cases}\left(u,v\ge0\right)}\) khi đó cần c/m:
\(\frac{2\left(1-u\right)}{1+u+v}+2\sqrt{\frac{1+u-v}{1+u+v}}\le\frac{2}{1+v}+2\sqrt{\frac{1-v}{1+v}}\)
Biến đổi tương đương ta có:
\(\frac{1+u-v}{1+u+v}-\frac{1-v}{1+v}\le\frac{u\left(2+v\right)}{\left(1+v\right)\left(1+u+v\right)}\left(\sqrt{\frac{1+u-v}{1+u+v}}+\sqrt{\frac{1-v}{1+v}}\right)\)
\(\Leftrightarrow\frac{2uv}{\left(1+u+v\right)\left(1+v\right)}\le\frac{u\left(2+v\right)}{\left(1+v\right)\left(1+u+v\right)}\left(\sqrt{\frac{1+u-v}{1+u+v}}+\sqrt{\frac{1-v}{1+v}}\right)\)
Nếu \(u=0\) BĐT hiển nhiên đúng. Với \(u>0\) BĐT tương đương với:
\(\frac{2v}{2+v}\le\sqrt{\frac{1+u-v}{1+u+v}}+\sqrt{\frac{1-v}{1+v}}\left(1\right)\)
Mà khi \(u>0\) ta có: \(\frac{1+u-v}{1+u+v}\ge\frac{1-v}{1+v}\)
Nên \(\sqrt{\frac{1+u-v}{1+u+v}}+\sqrt{\frac{1-v}{1+v}}\ge2\sqrt{\frac{1-v}{1+v}}=2\sqrt{-1+\frac{2}{1+v}}\)
Hơn nữa ta có: \(v\le\frac{4}{5}\Rightarrow\sqrt{\frac{1+u-v}{1+u+v}}+\sqrt{\frac{1-v}{1+v}}\ge2\sqrt{-1+\frac{2}{1+\frac{4}{5}}}=\frac{2}{3}\)
Ngoài ra do \(v\le\frac{4}{5}< 1\Rightarrow\frac{2v}{1+v}=\frac{2}{\frac{2}{v}+1}< \frac{2}{3}\)
Do vậy \(\left(1\right)\) đúng, BĐT đầu được c/m
\(\hept{\begin{cases}a+b+c+d=7\\a^2+b^2+c^2+d^2=13\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b+c+d=7-a\left(1\right)\\b^2+c^2+d^2=13-a^2\left(2\right)\end{cases}}\)
Ta có:
\(\left(b+c+d\right)^2=b^2+c^2+d^2+2\left(bc+cd+db\right)\)
\(\le b^2+c^2+d^2+\left(b^2+c^2\right)+\left(c^2+d^2\right)+\left(d^2+b^2\right)=3\left(b^2+c^2+d^2\right)\)
\(\Rightarrow\left(b+c+d\right)^2\le3\left(b^2+c^2+d^2\right)\left(3\right)\)
Thế (1), (2) vào (3) ta được
\(\left(7-a\right)^2\le3\left(13-a^2\right)\)
\(\Leftrightarrow2a^2-7a+5\le0\)
\(\Leftrightarrow1\le a\le\frac{5}{2}\)
\(\Rightarrow\hept{\begin{cases}min\left(a\right)=1\\max\left(a\right)=\frac{5}{2}\end{cases}}\)
\(\Rightarrow\frac{min\left(a\right)+max\left(a\right)}{2}=\frac{1+\frac{5}{2}}{2}=\frac{7}{4}\)
Ta chứng minh
\(a+b\ge\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\)
\(\Leftrightarrow\left(\sqrt[3]{a}-\sqrt[3]{b}\right)^2\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\ge0\)(đúng )
Áp đụng vào bài toán ta được
\(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\)
\(\le\frac{1}{\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}\right)+1}+\frac{1}{\sqrt[3]{yz}\left(\sqrt[3]{y}+\sqrt[3]{z}\right)+1}+\frac{1}{\sqrt[3]{zx}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+1}\)
\(=\frac{\sqrt[3]{z}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}+\frac{\sqrt[3]{x}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}+\frac{\sqrt[3]{y}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}=1\)
đặt x=a/b , y=b/c , z=c/a