Cho tam giác ABC vuông tại A ,AB<AC đường cao AH .Lấy điểm E trên cạnh AC sao cho AE=AB.gọi I là trung điểm của BE. tính số đo góc IHA.
A B C H I E
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F 80 o 50 o M K
Lấy M là điểm trên tia AF sao cho FM = AF. Khi đó ADMC là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường).
=> AD // CM => \(\widehat{ADF}=\widehat{FCM}=80^o\) (so le trong)
\(\widehat{BCM}=\widehat{BCF}+\widehat{FCM}=50^o+80^o=130^o\)
Vì ADMC là hình bình hành => AD = MC. Theo giả thiết AD = BC => MC = BC => Tam giác CMB cân tại C
=> \(\widehat{CBM}=\widehat{CMB}=\frac{180^o-130^o}{2}=25^o\)
BM cắt CD tại K. Xét tam giác BKC biết 2 góc là 50 và 25 độ => \(\widehat{BKC}=180-\left(50+25\right)=105^o\)
Trong tam giác ABM có EF là đường trung bình => EF // BM => \(\widehat{EFC}=\widehat{BKC}=105^o\) (hai góc đồng vị).
ĐS: \(\widehat{EFC}=105^o\)
a/b+c + b/c+a + c/a+b = 1
=> (a+b+c)(a/b+c + b/c+a + c/a+b = (a+b+c).1
=> a2/ b+c + a + b2/c+a + b + c2/a+b + c = a+b+c
=> a2/b+c + b2/c+a + c2/a+b = (a+b+c)-(a+b+c) = 0
đúng thì k cho mình nka
ĐK:\(a+b+c\ne0\)
Khi đó:\(\frac{a}{a+b}+\frac{b}{c+a}+\frac{c}{a+b}=1\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{a}{c+b}+\frac{b}{a+c}+\frac{c}{a+b}\right)=a+b+c\)
\(\Leftrightarrow\frac{\left(a+b+c\right)a}{c+b}+\frac{\left(a+b+c\right)b}{a+c}+\frac{\left(a+b+c\right)c}{a+b}=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\)
Gọi số nguyên tố lớn là a = 2.3.5....m; Số bé là b = 2.3.5....n (m; n là số nguyên tố)
=> a - b = 30 000
=> 2.3.5...m - 2.3.5...n = 30 000
Nhận xét nếu hai số a; b đều chứa thừa số nguyên tố là 7 thì 7 sẽ là ước của 30 000 ( Vô lí)
=> hai số a; b không có chung thừa số 7
Số lớn > 30 000 => Số bé không chứa thừa số 7 => b = 2 ; hoặc b = 2.3 = 6 hoặc b = 2.3.5 = 30
Nếu b = 2 => a = 30 002 không là số nguyên tố ( Loại)
Nếu b = 6 => a = 30 006 (Loại)
=> b = 30 => a = 30 030
Vậy 2 số đó là 6; 30 030
Nguyễn Lê Kim Uyên tớ phục bn rồi trả lời linh tinh mà vẫn được 3 l-i-k-e
Gọi số học sinh nữ là x (bạn) (x > 0)
Bạn nữ thứ nhất quen 20 + 1 bn nam
Bạn nữ thứ 2 quen 20 + 2 bn nam
Bn nữ thứ 3 quen 20 + 3 bn nam
...
Bạn nữ thứ x quen 20 + x bạn nam, là tất cả các bạn nam
Ta có phương trình : x + 20 + x = 50
→x=15
Vậy số học sinh nữ là 15 bạn, số học sinh nam là 35 bạn/
đơn giản mak bạn.. vì diện tích các tam giác = nhau và diện tích các tứ giác = nhau.. (ai không biết bảo mjh chứng mjh cho).. giờ kẻ từ tâm hình vuông đến 1 trong 4 đỉnh của hình vuông, nó chia tứ giác thành 2 tam giác mà mỗi tam giác cho diện tích = các tam giác khác, mà 2 tam giác được chia là = nhau lên T/t=2..OK
neu p khong chia het cho 3 thi p2 chia 3 du 1 suy ra p2 +8 chia het cho 3 (trai gia thiet p2 +8 nguyen to)
vay p phai chia het cho 3, ma p nguyen to nen p=3 . suy ra p2 +2=11 la so nguyen to
tuong tu, o cau b ta cung cm duoc p=3
+) Xét tam giác ABC và HBA có: góc BAC = AHB (= 90o); góc ABC chung
=> tam giác ABC đồng dạng với tam giác HBA (g - g)
=> \(\frac{AB}{HB}=\frac{BC}{BA}\) => AB2 = HB.BC (1)
+) Xét tam giác ABI và EBA có: góc ABE chung; góc AIB = EAB (=90o)
=> Tam giác ABI đồng dạng với tam giác EBA (g- g)
=> \(\frac{AB}{EB}=\frac{BI}{BA}\) => AB2 = BI.BE (2)
Từ (1)(2) => HB.BC = BI.BE => \(\frac{BH}{BE}=\frac{BI}{BC}\)
+) Xét tam giác BHI và BEC có: góc CBE chung; \(\frac{BH}{BE}=\frac{BI}{BC}\)
=> tam giác BHI đồng dạng với tam giác BEC (c - g- c)
=> góc BHI = BEC (2 góc tương ứng)
+) Dễ có: BEC = 180o - BEA = 180o - 45o = 135o
=> góc BHI = 135o => góc IHC = 180o - 135o = 45o
+) Ta có góc IHA + IHC = AHC = 90o => góc IHA = 90o - IHC = 45o
Góc IHA = 900
Góc IHC = 1800