Chứng minh rằng, nếu \(ab\ne0\)và \(a\ne b^3\)thì ta luôn có:
\(\left(\sqrt[3]{a^4}+b^2\sqrt[3]{a^2}+b^4\right).\frac{\left(\sqrt[3]{a^8}-b^6+b^4\sqrt[3]{a^2}-a^2b^2\right)}{a^2b^2+b^2-b^8a^2-b^4}=a^2b^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng vi-et ta suy ra được nghiệm là:
\(\hept{\begin{cases}x=\frac{-m-\sqrt{m^2-4n}}{2}\\x=\frac{-m+\sqrt{m^2-4n}}{2}\end{cases}}\)
Ta có:
\(x_1=x_2^2+x_2+2\)
\(\Leftrightarrow x_1+x_2=\left(x_2+1\right)^2+1\)
\(\Leftrightarrow-m=\left(x_2+1\right)^2+1\)
Với \(\hept{\begin{cases}x_2=\frac{-m-\sqrt{m^2-4n}}{2}\\n=6-m\end{cases}}\)
\(\Leftrightarrow-m=\frac{\left(m-2\right)\sqrt{m^2+4m-24}+m^2-10}{2}+1\)
\(\Leftrightarrow-2m-m^2+8=\left(m-2\right)\sqrt{m^2+4m-24}\)
\(\Leftrightarrow4m^3+24m^2-144m+160=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=-10\\m=2\left(l\right)\end{cases}}\)
Tương tự cho trường hợp còn lại.
\(M=\left(\frac{\sqrt{t^2-a^2}+\sqrt{t^2+a^2}}{\sqrt{t^2-a^2}-\sqrt{t^2+a^2}}\right)^4\)
DO \(t=a\sqrt{\frac{x^2+1}{2x}}\)
=> \(t^2=a^2.\frac{x^2+1}{2x}\)
=> \(\sqrt{t^2-a^2=}\sqrt{a^2.\frac{x^2+1}{2x}-a^2}=\sqrt{a^2\left(\frac{x^2+1-2x}{2x}\right)}\)
= \(a\sqrt{\frac{\left(x-1\right)^2}{2x}}\)
TƯƠNG TỰ : \(\sqrt{t^2+a^2}=a\sqrt{\frac{\left(x+1\right)^2}{2x}}\)
=> M = \(\left(\frac{\sqrt{t^2-a^2}+\sqrt{t^2+a^2}}{\sqrt{t^2-a^2}-\sqrt{t^2+a^2}}\right)^4\)
= \(\left(\frac{a\left(\sqrt{\frac{\left(x+1\right)^2}{2x}}+\sqrt{\frac{\left(x-1\right)^2}{2x}}\right)}{a\left(\sqrt{\frac{\left(x-1\right)^2}{2x}}-\sqrt{\frac{\left(x+1\right)^2}{2x}}\right)}\right)^4\)
= \(\left(\frac{\sqrt{\frac{1}{2x}}.\left(x+1+x-1\right)}{\sqrt{\frac{1}{2x}}.\left(x-1-x-1\right)}\right)^4\)
( DO X+1>X-1>0)
= \(\left(\frac{2x}{-2}\right)^4\)
= \(x^4\)
= \(2012^4\)
Tính 2 nghiệm x1 và x2 theo m được
\(x_1=m-1;x_2=m+1\)
Thay vào 2 biểu thức đã cho được : m-3 và m-1
Vì (m-3) và (m-1) là hai nghiệm của phương trình bậc hai cần tìm nên phương trình đó bằng:
[X - ( m - 3 )] * [X - ( m - 1 )] = X2 - X*(m-1) - X*(m-3) + (m-1)(m-3) = X2 - X * (m -1+m-3) + m2 - 4m + 3 = X2 - (2m-4)*X + m2- 4m+3
Vậy phương trình cần tìm là: \(X^2-\left(2m-4\right)X+m^2-4m+3=0\)
-----
Giải thích thêm: Nếu x1, x2 là 2 nghiệm của PT ẩn X thì phương trình đó có thể phân tích thành: (X - x1)(X - x2) = 0
Vậy nếu biết đc 2 nghiệm của phương trình ta có thể tìm ra phương trình đó.
Xét PT \(x^2-2mx+m^2-1=0\)
\(\Leftrightarrow\left(x-m\right)^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x_1=m+1\\x_2=m-1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x_1^3-2mx_1^2+m^2x_1-2=\left(m+1\right)^3-2m\left(m+1\right)^2+m^2\left(m+1\right)-2=m-1\\x_2^3-2mx_2^2+m^2x_2-2=\left(m-1\right)^3-2m\left(m-1\right)^2+m^2\left(m-1\right)-2=m-3\end{cases}}\)
Gọi a, b là 2 nghiệm của pt cần tìm thì ta có:
\(\hept{\begin{cases}S=a+b=m-1+m-3=2m-4\\P=a.b=\left(m-1\right)\left(m-3\right)=m^2-4m+3\end{cases}}\)
Từ đây ta suy ra phương trình cần tìm là:
\(X^2-\left(2m-4\right)X+m^2-4m+3=0\)
bài này dùng nguyên lý drichlet toán rời rạc
Giả sử từ điểm A trong 17 điểm đã cho nối với 16 điểm còn lại bằng 3 loại màu => Theo nguyên lý Dirichlet có ít nhất 6 đoạn thẳng cùng một màu, giả sử đó là các đoạn thẳng AB1; AB2; …;AB6 cùng được tô màu đỏ.
Nếu có 2 trong 6 điểm B1; B2; ..; B6 được nối với nhau bằng màu đỏ thì bài toán được chứng minh. Nếu không có 2 điểm nào được nối với nhau bằng màu đỏ thì 6 điểm này được nối với nhau bằng hai màu xanh hoặc vàng.
Từ điểm B1 ta nối với 5 điểm còn lại Þ Có 5 đoạn thẳng mà chỉ có 2 màu => Theo nguyên lý Diricle có ít nhất 3 đoạn thẳng cùng màu, giả sử đó là 3 đoạn thẳng B1B2, B1B3, B1B4 có cùng màu xanh.
Xét tam giác B2B3B4
TH1: nếu 3 cạnh của tam giác này cùng màu thì bài toán đã được giải xong.
TH2: 3 cạnh của tam giác không cùng màu thì sẽ có ít nhất 1 cạnh có màu xanh giả sử đó là cạnh B2B3 => Tam giác B1B2B3 có ba cạnh cùng màu xanh.
Vậycó đpcm
\(\left(x^2+y\right)\left(x+y^2\right)=\left(x-y\right)^3\)
\(\Leftrightarrow y\left[2y^2+\left(x^2-3x\right)y+3x^2+x\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=0\\2y^2+\left(x^2-3x\right)y+3x^2+x=0\end{cases}}\)
Với \(y=0\)thì x nguyên tùy ý.
Với \(2y^2+\left(x^2-3x\right)y+3x^2+x=0\)
Ta có: \(\Delta=\left(x^2-3x\right)^2-4.2.\left(3x^2+x\right)=\left(x-8\right)x\left(x+1\right)^2\)
Với \(x=-1\) thì \(\Rightarrow y=-1\)
Với \(x\ne-1\) để y nguyên thì \(\Delta\) phải là số chính phương hay
\(\left(x-8\right)x=k^2\)
\(\Leftrightarrow\left(x^2-8x+16\right)-k^2=16\)
\(\Leftrightarrow\left(x-4+k\right)\left(x-4-k\right)=16\)
Tới đây thì đơn giản rồi b làm tiếp nhé.
Theo đề bài thì ta có:
\(ah_a=bh_b=ch_c=2\)
Ta có:
\(\left(a^2+b^2+c^2\right)\left(h_a^2+h_b^2+h_c^2\right)\ge\left(ah_a+bh_b+ch_c\right)^2\)
\(=\left(2+2+2\right)^2=36\)
Dấu = xảy ra khi \(\hept{\begin{cases}a=b=c=\frac{2}{\sqrt[4]{3}}\\h_a=h_b=h_c=\sqrt[4]{3}\end{cases}}\)
từ a1 tới a2012 đều có dạng an = \(\frac{\left(n+1\right)!}{n}\)
riêng a2013 = (n + 1)!
Cố gắng hơn nữa ah. Thế vô là thấy nó sai liền nên m không giải nữa.
Thay \(\hept{\begin{cases}a=2\\b=2\end{cases}}\) thì ta có:
\(\left(\sqrt[3]{2^4}+2^2.\sqrt[3]{2^2}+2^4\right).\frac{\left(\sqrt[3]{2^8}-2^6+2^4.\sqrt[3]{2^2}-2^2.2^2\right)}{2^2.2^2+2^2-2^8.2^2-2^4}=2^2.2^2\)
\(\Leftrightarrow1,477=16\left(sai\right)\)
Vậy đề bài cho tào lao.