K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2021
Dễ mà có khó đâu
26 tháng 3 2021

Úi Dồi Ôi dễ vãi

c,

- Xét Δ AHM và Δ AKM có:

+ Góc AHM = góc AKM = 900 (gt)

+ AM là cạnh chung

+ Góc HAM = góc KAM (AM là phân giác)

=> ΔAHM = Δ AKM (cạnh huyền - góc nhọn)

=>AH = AK (hai cạnh tương ứng )

=> Δ AHK cân tại A (gt)

=> +) Góc AHK = (180 - góc BAC) / 2

+) Góc ACB = (180 - góc BAC) / 2

=> Góc AHK = góc ACB

mà hai góc này ở vị trí đồng vị

=> HK // BC (đpcm)

5 tháng 2 2020

a) \(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)

\(=1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)

=> 7S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}\)

Lấy 7S trừ S ta có : 

7S - S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}-\left[1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\right]\)

6S = \(7-1-1+\left(\frac{1}{7}\right)^{2007}=5+\left(\frac{1}{7}\right)^{2007}\Rightarrow S=\frac{5+\left(\frac{1}{7}\right)^{2007}}{6}\)

25 tháng 3 2021

a) Xét Tam giác ABC và Tam giác ECM 
có:  BM = CM (M là trung điểm của BC)
       AMB = EMC ( Đối đỉnh)
       AM = EM (M là trung điểm của AE)
=> Tam giác ABC = Tam giác ECM (c. g .c) (đpcm)
b) Vì AB < AC
mà AB = EC
=> EC < AC
=>EAC < AEC (quan hệ giữa góc và cạnh đối diện )
=>MAC < MEC
Mà MAB = MEC (Tam giác ABC = Tam giác ECM)
=>MAC < MAB 

25 tháng 3 2021

a/ Xét ΔABM và ΔECM có:

MB=MC (Mlà trung điểm của BC)

góc AMB = góc EMC ( 2 góc đối đỉnh)

MA=ME(giả thiết)

Do đó ΔABM=ΔECM(c.g.c)

b/ MAC<MAB

25 tháng 3 2021

a, Đặt \(x=3k;y=5k\)

hay \(A=\frac{5.9k^2+3.25k^2}{10.9k^2-3.25k^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=\frac{120}{15}=8\)

b, Ta có : \(x-y-z=0\Rightarrow x-y=z;x-z=y;x=y+z\)

\(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)

\(=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)

hay \(\frac{y+z-z}{x}.\frac{x-z-x}{y}.\frac{x-y+y}{z}=\frac{y\left(-z\right).x}{xyz}=-1\)