Cho đường tròn (O ; R), các đường kính AB và CD vuông góc với nhau. Gọi I là trung điểm của BO. Tia CI cắt đường tròn tại E, EA cắt CD ở K. Tính độ dài DK.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(S_{ABC}=\frac{bc\sin A}{2}=\frac{ac\sin B}{2}=\frac{ab\sin C}{2}=\frac{abc}{4R}\)
+ Từ \(\frac{bc\sin A}{2}=\frac{ac\sin B}{2}\Rightarrow b\sin A=a\sin B\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}\left(1\right)\)
+ Từ \(\frac{ac\sin B}{2}=\frac{ab\sin C}{2}\Rightarrow c\sin B=b\sin C\Rightarrow\frac{b}{\sin B}=\frac{c}{\sin C}\left(2\right)\)
+ Từ \(\frac{bc\sin A}{2}=\frac{abc}{4R}\Rightarrow\sin A=\frac{a}{2R}\Rightarrow\frac{a}{\sin A}=2R\left(3\right)\)
Từ (1) (2) (3) \(\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\left(dpcm\right)\)
A B C H K
Từ A kẻ đường cao AH (H thuộc BC) , Từ B kẻ đường cao BK (K thuộc AC)
Ta có : sinA=BKABsinA=BKAB ; sinB=AHABsinB=AHAB ; sinC=AHACsinC=AHAC
⇒ABsinC=ABAHAC=AB.ACAH⇒ABsinC=ABAHAC=AB.ACAH ; ACsinB=ACAHAB=AB.ACAHACsinB=ACAHAB=AB.ACAH
⇒csinC=bsinB⇒csinC=bsinB (1)
Lại có : BK=sinC.BC⇒BCsinA=BCBKAB=BC.ABBK=AB.BCsinC.BC=ABsinCBK=sinC.BC⇒BCsinA=BCBKAB=BC.ABBK=AB.BCsinC.BC=ABsinC
⇒asinA=csinC⇒asinA=csinC (2)
Từ (1) và (2) ta có : asinA=bsinB=csinCasinA=bsinB=csinC (Đpcm)

A B C 0 H D
Vẽ đường kính AD và AH⊥BC(H∈BC)AH⊥BC(H∈BC).
Ta có \(\widehat{ACD}\)ACD^ là góc nội tiếp chắn nửa đường tròn ⇒\(\widehat{ACD}\)=900⇒ACD^=900.
Xét ΔABHΔABH và ΔADCΔADC có:
\(\widehat{AHB}\)=\(\widehat{ACD}\)=900AHB^=ACD^=900;
ABH^=ADC^ \(\widehat{ABH}=\widehat{ADC}\)(hai góc nội tiếp cùng chắn cung AC);
⇒ΔABH∼ΔADC(g.g)⇒AHAC=ABAD⇒515=82R⇒2R=24⇔R=12(cm)⇒ΔABH∼ΔADC(g.g)⇒AHAC=ABAD⇒515=82R⇒2R=24⇔R=12(cm)

ta có
\(199^{20}< 200^{20}=2^{20}.10^{40}\)
\(2003^{15}>2000^{15}=2^{15}.10^{45}=2^{15}.10^5.10^{40}>2^{20}.10^{40}>199^{20}\)
vì vậy \(2003^{15}>199^{20}\)

\(\frac{x}{36}=\frac{1}{4}\Leftrightarrow4x=36\Leftrightarrow x=36:4\Leftrightarrow x=9\)

Vẽ đường kính AK
+) Dễ có: ^KBC = ^KAC (2 góc nội tiếp cùng chắn cung KC) (1)
+) ^ABK là góc nội tiếp chắn nửa đường tròn nên ^ABK = 900
Có: ^KBC + ^CBA = ^ABK = 900 (cmt)
^BAH + ^CBA = 900 (∆ABH vuông tại H)
Từ đó suy ra ^KBC = ^BAH (2)
Từ (1) và (2) suy ra ^BAH = ^KAC hay ^BAH = ^OAC (đpcm)
Kẻ đường kính AE của đường tròn ( O) . Ta thấy \(\widehat{ACE}=90^o\)( góc nội tiếp chắn nửa đường tròn)
\(\Rightarrow\widehat{OAC}+\widehat{AEC}=90^o\) (1)
Theo gt, ta có: \(\widehat{BAH}+\widehat{ABC}=90^O\) (2)
Lại có: \(\widehat{AEC}=\widehat{ABC}\) (3)
Từ (1), (2), (3) => đpcm
O A B C D I E K
Ta có :
\(\frac{KC}{sin\widehat{CAK}}=\frac{R\sqrt{2}}{sin\widehat{AKC}}=\frac{R\sqrt{2}}{sin\widehat{AED}}=\frac{AE}{sin\widehat{ADE}}=\frac{AE}{sin\widehat{BIE}}=\frac{AE}{sin\widehat{AIE}}=\frac{3R}{\sqrt{2}}\)
\(\Rightarrow sin\widehat{AKC}=\frac{2}{3}\)
\(\Rightarrow AK=\frac{2}{3R}\)
áp dụng định lý Py ta go vào \(\Delta AOK\) ta được
\(AK^2=AO^2+OK^2\)
\(\Rightarrow OK=\sqrt{R^2-\frac{4}{9R^2}}=\sqrt{9R^4-4}\)
\(\Rightarrow DK=OD-OK=R-\sqrt{9R^4-4}\)
\(AK=\frac{2}{\sqrt{3}}R\) chứ bạn?