Cho a,b,c,x,y,z là số dương . Chứng minh \(\frac{x^2+a}{yz+b}+\frac{y^2+b}{xz+c}+\frac{z^2+c}{xy+a}\ge3\)
P.s: Spammer lướt hết nhé ko ai bắt giới thiệu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2x^2+5x-2}-\sqrt{2x^2+5x-9}=1\)
<=> \(\sqrt{2x^2+5x-2}=1+\sqrt{2x^2+5x-9}\)(1)
ĐK : \(\orbr{\begin{cases}x\ge\frac{\sqrt{97}-5}{4}\\x\le\frac{-\sqrt{97}-5}{4}\end{cases}}\)
Đặt t = 2x2 + 5x - 2
(1) <=> \(\sqrt{t}=1+\sqrt{t-7}\)( t ≥ 7 )
Bình phương hai vế
<=> \(t=t+2\sqrt{t-7}-6\)
<=> \(t+2\sqrt{t-7}-t=6\)
<=> \(2\sqrt{t-7}=6\)
<=> \(\sqrt{t-7}=3\)
<=> t - 7 = 9
<=> t = 16 ( tm )
=> 2x2 + 5x - 2 = 16
<=> 2x2 + 5x - 2 - 16 = 0
<=> 2x2 + 5x - 18 = 0
<=> 2x2 - 4x + 9x - 18 = 0
<=> 2x( x - 2 ) + 9( x - 2 ) = 0
<=> ( x - 2 )( 2x + 9 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\2x+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{9}{2}\end{cases}}\)( tm )
Vậy phương trình có hai nghiệm x1 = 2 ; x2 = -9/2
\(\sqrt{2x^2+5x-2}-\sqrt{2x^2+5x-9}=1\)
\(\Leftrightarrow\sqrt{2x^2+5x-2}-\sqrt{2x^2+5x-2-7}=1\)
Đặt : \(\sqrt{2x^2+5x-2}=t\)
\(\Leftrightarrow t-\sqrt{t^2-7}=1\)
Gải được t thế vào tìm được x =2 nha bạn
Giải:
Ta có :
\(Sn=\frac{4n+\sqrt{\left(2n+1\right)\left(2n-1\right)}}{\sqrt{2n+1}+\sqrt{2n-1}}\)
\(=\frac{\left(\sqrt{2n+1}-\sqrt{2n-1}\right)\left[\left(2n-1\right)+\left(2n+1\right)+\sqrt{\left(2n+1\right)\left(2n-1\right)}\right]}{\left(\sqrt{2n+1}+\sqrt{2n-1}\right)\left(\sqrt{2n+1}-\sqrt{2n-1}\right)}.\)
\(=\frac{\left(\sqrt{2n+1}\right)^3-\left(\sqrt{2n-1}\right)^3}{2}\)
Tương tự =>\(S_1+S_2+...+S_{40}=\frac{\left(\sqrt{2n_1+1}\right)^3+\sqrt{2n_{40}+1}^3}{2}\)
Sau đó thì dễ rồi ha
Đặt: \(\hept{\begin{cases}\sqrt{1+x}=a\ge0\\\sqrt{1-x}=b\ge0\end{cases}}\)
Ta có:
\(x+2=3\sqrt{1-x^2}+\sqrt{1+x}\)
\(\Leftrightarrow2\left(1+x\right)+\left(1-x\right)-1=3\sqrt{\left(1-x\right)\left(1+x\right)}+\sqrt{1+x}\)
\(\Leftrightarrow2a^2+b^2-3ab-a-1=0\)
\(\Leftrightarrow\left(b+1-a\right)\left(b-1-2a\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}b=a-1\\b=1+2a\end{cases}}\)
Tới đây thì đơn giản rồi nhé.
mk tìm ra biểu thức để liên hợp r` nà, bn có can đảm thì xài tạm liên hợp :3
\(-\frac{25\sqrt{3}-48}{13}x-\frac{8\sqrt{27}-57}{13}\)
Sửa lại!
\(A=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}..\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{4-2-\sqrt{2+\sqrt{3}}}.\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}.\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{4-2-\sqrt{3}}=\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}=\sqrt{4-3}=1.\)
Giả sử z là số lớn nhất trong 3 số
Từ đề bài ta có:
\(\sqrt{x+2011}+\sqrt{y+2012}+\sqrt{z+2013}=\sqrt{z+2011}+\sqrt{x+2012}+\sqrt{y+2013}\)
\(\Leftrightarrow\sqrt{x+2012}-\sqrt{x+2011}+\sqrt{y+2013}-\sqrt{y+2012}=\sqrt{z+2012}-\sqrt{z+2011}+\sqrt{z+2013}-\sqrt{z+2012}\)
\(\Leftrightarrow\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}+\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}=\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}+\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\)
Ta lại có:
\(\hept{\begin{cases}\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}\ge\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}\\\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}\ge\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\end{cases}}\)
Dấu = xảy ra khi x = y = z
Tương tự cho trường hợp x lớn nhất với y lớn nhất.
fdy 'rshniytguo;yhuyt65edip;ioy86fo87ogtb eubuiltgr6sdwjhytguyh8 ban oi bai nay mac kho giai vao cut sit
Hình như thiếu đề nên cho cả n là số tự nhiên khác 0 nữa.
Xét n = 1 thì ta có:
\(m^2-1=\left(2x+1\right)^2-1=4\left(x^2+x\right)⋮8\)
Giả sử nó đúng tới n = k
\(\Rightarrow m^{2^k}-1=a.2^{k+2}=ay\)
\(\Rightarrow m^{2^k}=ay+1\)
Ta chứng minh nó đúng với n = k + 1
Hay \(\Rightarrow m^{2.2^k}-1⋮2^{k+2+1}\)
\(\Rightarrow\left(ay+1\right)^2-1⋮2y\)
Ta có: \(\left(ay+1\right)^2-1=a^2y^2+2ay\)
Mà \(\hept{\begin{cases}a^2y^2⋮2y\\2ay⋮2y\end{cases}}\)(do y là số chẵn)
\(\Rightarrow\)Nó đúng với n = k + 1.
Vậy theo quy nạp ta có điều phải chứng minh.
Ta có:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{\left(b+c\right)^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(=\frac{\left(b+c\right)^2b^2+\left(b+c\right)^2c^2+b^2c^2}{b^2c^2\left(b+c\right)^2}\)
\(=\frac{b^4+2b^3c+3b^2c^2+2bc^3+c^4}{b^2c^2\left(b+c\right)^2}\)
\(=\frac{\left(b^4+2b^2c^2+c^4\right)+2bc\left(b^2+c^2\right)+b^2c^2}{b^2c^2\left(b+c\right)^2}\)
\(=\frac{\left(b^2+bc+c^2\right)^2}{b^2c^2\left(b+c\right)^2}\)
\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{\left(b^2+bc+c^2\right)^2}{b^2c^2\left(b+c\right)^2}}=\frac{b^2+bc+c^2}{bc\left(b+c\right)}\)
Vì a, b, c là các số hữu tỷ nên \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\) là số hữu tỷ
Đề sai rồi. Chỉ cần \(3\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}\right)=\frac{49}{12}>4\) thì cần gì tới 4 số phải bằng nhau nữa.
Xét p = 3 thì không tìm được q nguyên.
Xét q = 3 thì không tìm được p nguyên.
Xét p, q khác 3.
TH 1: p,q chia cho 3 có cùng số dư thì p3 và q5 chia cho 3 cũng có cùng số dư.
\(\Rightarrow p^3-q^5\)chia hết cho 3 nhưng (p + q) lại không chia hết cho 3 nên loại.
TH 2: p,q chia cho 3 có số dư khác nhau
\(\Rightarrow p^3-q^5\)không chia hết cho 3 nhưng (p + q) chia hết cho 3 nên loại.
Vậy không tồn tại p, q thỏa mãn bài toán.
Xét p = 3 thì không tìm được q nguyên.
Xét q = 3 thì không tìm được p nguyên.
Xét p, q khác 3.
TH 1: p,q chia cho 3 có cùng số dư thì p3 và q5 chia cho 3 cũng có cùng số dư.
$\Rightarrow p^3-q^5$⇒p3−q5chia hết cho 3 nhưng (p + q) lại không chia hết cho 3 nên loại.
TH 2: p,q chia cho 3 có số dư khác nhau
$\Rightarrow p^3-q^5$⇒p3−q5không chia hết cho 3 nhưng (p + q) chia hết cho 3 nên loại.
Vậy không tồn tại p, q thỏa mãn bài toán.
Câu hỏi của Ace Legona - Toán lớp 10 | Học trực tuyến
Vào đây tham khảo ! =))
Ace Legona là thangbnsh, Thắng Nguyễn cũng là thangbnsh. Đặt câu hỏi làm gì v???