x {x - 7 } {x- 3 }=0
x=0; x-7 = 0 ;x-3 = 0
vậy x=0;x=7;x=3
đúng ko các bn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có:
A + D > B + C (1)
A + B = C + D (2)
B > A + C (3)
Từ (3) suy ra B > A và B > C
Vì A + B = C + D mà B > C nên suy ra A < D (nếu ngược lại thì A + B > C + D)
Vì A + D > B + C mà A < B => D > C (vì nếu ngược lại thì A + D < B + C)
Vậy ta có: B > A, C
D > A, C
Lấy (1) trừ (2) ta có: D - B > B - D
=> 2 D > 2 B => D > B
Mà A + B = C + D => C < A
Vậy ta có kết luận: A < C < B < D
Thử vài trường hợp đầu:
16= 42
1156 = 342
111556 = 3342
Như vậy có thể gợi ý:
11...1155..56 = 33..342 (ở đây có n+1 chữ số 1, n chữ số 5 và n chữ số 3)
Ta có nhận xét:
11..11 11..11 (2n + 2 chữ số 1)
+ 44..44 (n + 1 chữ số 4)
1
11..11155..56 (n+1 chữ số 1, n chữ số 5 và 1 chữ số 6)
Vậy 11..11155..56 = 111...1 + 44..44 + 1
= \(\frac{99..99}{9}+4\frac{9..9}{9}+1\)
= \(\frac{10^{2n+2}}{9}+4\frac{10^{n+1}}{9}+1\)
= \(\frac{10^{2n+2}-1}{9}+4\frac{10^{n+1}-1}{9}+1\)
= \(\frac{10^{2n+2}+4.10^{n+1}+4}{9}\)
=\(\frac{\left(10^{n+1}\right)^2+4.10^{n+1}+2^2}{9}\)
= \(\frac{\left(10^{n+1}+2\right)^2}{9}\)
=\(\left(\frac{10^{n+1}+2}{3}\right)^2\)
= \(\left(\frac{100..02}{3}\right)^2\)
= 333...342
Giả sử tồn tại số tự nhiên a thì số tự nhiên đó có dạng \(21k+7\) và \(84t+3\) (k,t \(\in\) N)
Ta có : a = 21k + 7
và a = 84t + 3
=> 21k + 7 = 84t + 3
=> 21k - 84t = -4
=> 21 ( k - 4t ) = -4
=> k - 4t = \(-\frac{4}{21}\)
Mâu thuẫn vì tổng các số tự nhiên là số tự nhiên.
Nên điều giả sử là sai
Vậy không thể tồn tại một số chia cho 21 dư 7 mà chia cho 84 lại dư 3 (đpcm).
Vì a là số chia hết cho 9 mà b là tổng các chữ số của a nên b chia hết cho 9.Tương tự ta có c;d cũng chia hết cho 9 và đương nhiên khác 0.Vì a gồm 2004 chữ số mà mỗi chữ số không vượt quá 9 nên b không vượt quá: 2004x9=18036.Do đó b không quá 5 chữ số và c<9x5=45
Nhưng c là số chia hết cho 9 và khác 0 nên c có thể là: 9;18;27;36.Dù trường hợp nào xảy ra ta cũng có d chia hết cho 9
Bài của Thảo: Sửa kết luận c = 9 ; 18; 27; 36 => d luôn bằng 9
Vì tập hợp xét là 100 số tự nhiên đâu tiên nên tổng các chữ số của 1 số trong đó nhỏ nhất bằng 0 (chính là số 0) và lớn nhất bằng 9 + 9 = 18
như vậy tổng các chữ số của 1 số có thể nhận các giá trị từ 0; 1; 2;...;18. Tức là, k \(\in\) {0;1;2;...;18}
Để số lượng các số có tổng chữ số bằng nhau là lớn nhất thì mỗi số \(\in\) {0;1;2;...;18} có nhiều cách phân tích thành tổng của hai chữ số nhất
dễ dàng loại ngay 0;1; 2;3;
4 = 4 + 0 = 3 + 1 = 2+ 2
5 = 5 + 0 = 4 + 1 = 2 + 3
6 = 6 + 0 = 5 + 1 = 4 + 2 = 3 + 3
7 = 7 + 0 = 6 + 1 = 5 + 2 = 4 + 3
8 = 8 + 0 = 7 + 1 = 6 + 2 = 5 + 3 = 4 + 4
9 = 9 + 0 = ...= 5 + 4
10 = 9 + 1 = 8 + 2 = 7 + 3 = 6 + 4 = 5 + 5
11 = 9 + 2 = 8 + 3 = 7 + 4 = 6 + 5
12 = 8 + 4 = 7 + 5 = 6 + 6
....18 = 9 + 9
=> Với k = 8 hoặc k = 10 có nhiều cách phân tích nhất , ứng với 5 số
Vậy k = 8 hoặc k = 10
Tìm tử số chung là BCNN (8; 4; 6) = 24
Viết \(\frac{4}{7}=\frac{24}{42};\frac{6}{7}=\frac{24}{28}\)
Tìm phân số có dạng \(\frac{24}{a}\) biết \(\frac{24}{42}<\frac{24}{a}<\frac{24}{28}\)
=> \(\frac{24}{a}\) có thể là các phân số : \(\frac{24}{41};\frac{24}{40};...;\frac{24}{29}\)
Để phân số có tử là 8 thì các phân số trên có mẫu số chia hết cho 3. Nên các phân số thỏa mãn là:
\(\frac{24}{39};\frac{24}{36};\frac{24}{33};\frac{24}{30}\)hay là \(\frac{8}{13};\frac{8}{12};\frac{8}{11};\frac{8}{10}\)
trước hết quy đồng tử sau đó suy ra điều kiện rồi dựa vào đó mà tìm tử
A B C N M K
a) Xét tam giác BMC và tam giác BCA có chung chiều cao hạ từ B xuống AC; đáy CM = 1/3 đáy CA
=> S (BMC) = 1/3 x S(BCA) = 1/3 x 180 = 60
Xét tam giác BMC và tam giác NMC có: chung chiều cao hạ từ đỉnh M xuống cạnh BC; đáy CN = 2/3 đáy CB
=> S(NMC) = 2/3 x S (BMC) = 2/3 x 60 = 40
S(AMNB) = S (ABC) - S(MNC) = 180 - 40 = 140
b) Xét tam giác ABN và tam giác ABC có chung chiều cao hạ từ A xuống đáy BC; đáy BN = 1/3 đáy BC
=> S(ABN) = 1/3 x S (ABC) = 1/3 x 180 = 60
=> S(AMN) = A(AMNB) - S(ABN) = 140 - 60 = 80
=> Tỉ số S(AMN)/ S(ABN) = 80/60 = 4/3
=> Chiều cao hạ M xuống AN : Chiều cao hạ từ B xuống AN = 4: 3 (Vì tam giác ABN và tam giác AMN có chung đáy AN)
Mà tam giác ABK và AMK có chung đáy AK
=> S(AMK) : S(ABK) = 4: 3
Xét 2 tam giác AMK và ABK có chung chiều cao hạ từ A xuống BM ; đáy lần lượt là KM; KB
=> KM/ KB = 4/3
Gọi ƯCLN(a,b)=d
=> a=dm,b=dn (m,n)=1
=> BCNN(a,b)=dmn
Theo bài ra ta có: ƯCLN(a,b)+BCNN(a,b)=a+b
=> d+dmn=dm+dn
=> d.(1+mn)=d.(m+n)
=> 1+mn=m+n
=> 1+mn-m-n=0
=> (mn-n)+(n-1)=0
=> (n-1).m+(n-1).1=0
=> (n-1).(m+1)=0
=>n-1=0=>n=1=>b=1.d=d
mà a=dm chia hết cho d=b
=>a chia hết cho b(1)
hoặc m+1=0=>m=-1=>b=-1.d=-d
mà a=dm=(-d).(-m) chia hết cho -d=b
=>a chia hết cho b(2)
Từ (1) và (2)=>a chia hết cho b
Vậy a chia hết cho b
cách làm của Cương đúng nhưng viêt nhâm chỗ 1 + mn - m - n = 0 => (mn - n) + (n - 1) = 0
Phải là (mn - n) + (1 - m) = 0 => n(m - 1) - (m-1) = 0 => (n-1).(m-1) = 0
\(x\left(x-7\right)\left(x-3\right)=0\)
\(\hept{\begin{cases}x=0\\x-7=0\\x-3=0\end{cases}}\)
\(\hept{\begin{cases}x=0\\x=0+7\\x=0+3\end{cases}}\)
\(\hept{\begin{cases}x=0\\x=7\\x=3\end{cases}}\)
\(\Rightarrow x=0;7;3\)