Cho tứ giác lồi ABCD có M,N là trung điểm của AB và CD. Chứng mình MN \(\le\frac{BC+AD}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a + b + c = 0 => (a + b + c)2 = 0 => a2 + b2 + c2 = -2(ab + bc + ca) (1)
=> (a2 + b2 + c2)2 = 4(ab + bc + ca)2 (2) => a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2c2a2 = 4(a2b2 + b2c2 + c2a2 + 2(ab2c + abc2 + a2bc)).
=> a4 + b4 + c4 = 2a4b2 + 2b2c2 + 2c2a2 + 8abc(a + b + c)
a) => a4 + b4 + c4 = 2(a4b2 + b2c2 + c2a2) (ĐPCM - a)
b) Từ (1) => 2(ab + bc + ca) = -(a2 + b2 + c2 )
=> 4(ab + bc + ca)2 = (a2 + b2 + c2 )2 = a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2c2a2.
Thay từ (a) 2a2b2 + 2b2c2 + 2c2a2 = a4 + b4 + c4
=> 4(ab + bc + ca)2 = 2(a4 + b4 + c4)
Hay a4 + b4 + c4 = 2(ab + bc + ca)2 (ĐPCM - b)
c) Từ (2) (a2 + b2 + c2)2 = 4(ab + bc + ca)2 = 4(a2b2 + b2c2 + c2a2 + 2(ab2c + abc2 + a2bc)) = 4(a4b2 + b2c2 + c2a2)+ 8abc(a + b + c)
=> (a2 + b2 + c2)2 = 4(a4b2 + b2c2 + c2a2) = 2(a4 + b4 + c4) (Từ a)
Hay a4 + b4 + c4 = 1/2 * (a2 + b2 + c2)2 (ĐPCM - c).

\(\left(y-a\right)^2+\left(y-b\right)^2+\left(y-c\right)^2=a^2+b^2+c^2-p^2\)
\(\Leftrightarrow\left(y-a\right)^2-a^2+\left(y-b\right)^2-b^2+\left(y-c\right)^2-c^2=-p^2\)
\(\Leftrightarrow y\left(y-2a\right)+y\left(y-2b\right)+y\left(y-2c\right)=-p^2\)
\(\Leftrightarrow y\left(y-2a+y-2b+y-2c\right)=-p^2\)
\(\Leftrightarrow y\left(3y-2\left(a+b+c\right)\right)=-p^2\). Thay a+b+c=2y

Từ: \(p^2-q^2=p-3q+1\)\(\Rightarrow p^2-p=q^2-3q+1\Rightarrow p\left(p-1\right)=q\left(q-1\right)-2q+1\)(1)
Ta thấy p(p-1) và q(q-1) luôn chẵn; Nên Vế trái của (1) chẵn; Vế phải của 1 luôn lẻ với mọi p; q
Nên không có p; q nguyên nào thỏa mãn điều kiện đề bài.

Gọi biểu thức trên là A ta có
A = n^3 - n^2 - 7n + 10 = n^3 - 2n^2 + n^2 - 2n - 5n + 10
= n^2(n -2) + n(n-2) - 5(n - 2) = (n -2)(n^2 + n - 5)
A là số nguyên tố khi:
n - 2 = 1 => n = 3
hoặc: (n^2 + n - 5) = 1 => n^2 + n - 6 = 0 => n = 2 ( loại vì A = 0) và n = -3 (loại vì n là số tự nhiên)
vậy n = 3 thì A = 7 là số nguyên tố

Áp dụng BĐT Cosy Schwarz : \(\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}+\frac{a_3^2}{b_3}+...+\frac{a_n^2}{b_n}\ge\frac{\left(a_1+a_2+a_3+...+a_n\right)^2}{b_1+b_2+b_3+...+b_n}.\)(*)
với \(b_1=a_1^2;b_2=a_2^2;b_3=a_3^2;...;b_n=a_n^2\)ta có:
\(\frac{a_1^2}{a^2_1}+\frac{a_2^2}{a^2_2}+\frac{a_3^2}{a_3^2}+...+\frac{a_n^2}{a^2_n}\ge\frac{\left(a_1+a_2+a_3+...+a_n\right)^2}{a^2_1+a^2_2+a^2_3+...+a^2_n}.\)
\(n\ge\frac{\left(a_1+a_2+a_3+...+a_n\right)^2}{a^2_1+a^2_2+a^2_3+...+a^2_n}\Leftrightarrow\left(a_1+a_2+a_3+...+a_n\right)^2\le n\cdot\left(a^2_1+a^2_2+a^2_3+...+a^2_n\right)\)
Để đạt được dấu "=" thì \(a_1=a_2=a_3=...=a_n\).
Áp dụng bất đẳng thức Bunhiacopxki, ta được : \(\left(a_1+a_2+a_3+...+a_n\right)^2=\left(1.a_1+1.a_2+1.a_3+...1.a_n\right)^2\le\left(1^2+1^2+1^2+...+1^2\right)\left(a_1^2+a_2^2+a_3^2+...+a_n^2\right)=n.\left(a_1^2+a_2^2+a_3^2+...+a_n^2\right)\)
\(\Rightarrow\left(a_1+a_2+a_3+...+a_n\right)^2\le n\left(a_1^2+a_2^2+a_3^2+...+a_n^2\right)\)
Dấu đẳng thức xảy ra \(\Leftrightarrow\frac{a_1}{1}=\frac{a_2}{1}=\frac{a_3}{1}=...=\frac{a_n}{1}\Leftrightarrow a_1=a_2=a_3=...=a_n\)
Do đó, kết hợp với giả thiết của đê bài, ta được điều phải chứng minh.

1./ Từ \(a^2\left(b+c\right)=b^2\left(c+a\right)\Leftrightarrow a^2b-ab^2+ca^2-cb^2=0\Leftrightarrow ab\left(a-b\right)+c\left(a-b\right)\left(a+b\right)=0.\)
\(\Leftrightarrow\left(a-b\right)\left(ab+bc+ac\right)=0.\)Mà \(a\ne b\Rightarrow ab+bc+ac=0\)(1)
2./ Từ \(a^2\left(b+c\right)=b^2\left(c+a\right)\Leftrightarrow\frac{a^2}{a+c}=\frac{b^2}{b+c}=\frac{a^2-b^2}{a-b}=a+b\)Vì \(a\ne b\)\(\Rightarrow a^2=\left(a+b\right)\left(a+c\right)\).
\(\Rightarrow2012=a^2\left(b+c\right)=\left(a+b\right)\left(a+c\right)\left(b+c\right)=\left(a+b\right)\left(ab+bc+ac+c^2\right)=c^2\left(a+b\right)\)
3./ Vậy \(M=c^2\left(a+b\right)=2012.\)

Ta có : \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)
=> \(\frac{a^2+ab+ac}{b+c}+\frac{b^2+ab+bc}{a+c}+\frac{c^2+ac+bc}{a+b}=a+b+c\)
=> \(\frac{a^2}{b+c}+\frac{ab+ac}{b+c}+\frac{b^2}{a+c}+\frac{ab+bc}{a+c}+\frac{c^2}{a+b}+\frac{ac+bc}{a+b}=a+b+c\)
=> \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}+a+b+c-a-b-c=0\)
=> \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\)
Cấm ai được chép

Áp dụng bất đẳng thức Cosi, ta được : \(a+1\ge2\sqrt{a}\)(1)
\(b+1\ge2\sqrt{b}\)(2) ; \(c+1\ge2\sqrt{c}\)(3)
Nhân (1) , (2) , (3) theo vế được :
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)
Bạn chú ý đề bài phải có thêm điều kiện a,b,c là các số không âm nhé ^^
Bởi vì khi đó ta mới áp dụng được BĐT Cosi ^^
abc=1
=>a=b=c=1.
(a+1)(b+1)(c+1)=2.2.2=8
Nếu tồn tại thừ số âm trong biểu thức abc=1 thì đề sai
A D B C M N I
xét trường hợp tứ giác lồi ABCD không phải là hình thang
nối BD , gọi I là trung điểm của BD
xét tam giác ABD ta được
M là trung điểm AB (GT)
I là trung điểm của BD ( như cách gọi)
=> MI là đường trung bình của tam giác ABD
=> MI // AD ; MI = 1/2 AD (1)
xét tam giác DBC ta có
I là trung điểm của BD ( như cách gọi)
N là trung điểm của CD ( GT)
=> NI là đường trung bình của tam giác DBC
=> NI //BC ; NI = 1/2BC (2)
cộng theo vế của (1) và (2) ta được
NI + MI = 1/2 (AD + BC) hay \(MI+NI=\frac{BC+AD}{2}\)(3)
vì ABCD không phải là hình thang nên I không thuộc MN hay 3 điểm I,M,N không thẳng hàng. Ta được tam giác MIN.
áp dụng định lí bất đẳng thức tm giác vào tm giác MIN ta có
MN < MI + NI (4)
kết hợp (3) và (4) ta được
\(MN<\frac{BC+AD}{2}\)(5)
* Xét trường hợp ABCD là hình thang ( AD // BC)
ta có
M là trung điểm AB,
N là trung điểm CD
=> MN là đường trung bình của hình thang ABCD
=> \(MN=\frac{BC+AD}{2}\) (6)
kết hợp (5) và (6) ta được
\(MN\le\frac{BC+AD}{2}\)
an cut