K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

phân tích đa thức thành nhân tử(giúp mình với mình đang cần gấp)1)125-x6                                                                                                                    8)3xy+x+15y+52)(7x-4)2-(2x+1)2                                                                                                      9)9-x2+2xy-y2                       ...
Đọc tiếp

phân tích đa thức thành nhân tử(giúp mình với mình đang cần gấp)

1)125-x6                                                                                                                    8)3xy+x+15y+5

2)(7x-4)2-(2x+1)2                                                                                                      9)9-x2+2xy-y2                                                                                                          

3)(x2+1)2-6(x2+1)+9                                                                                                  10)11x+11y-x2-xy                                              

4)27x2(y-1)-9x2(1-y)                                                                                                  11)x2-6x-y2+9                                     

5)y(x-z)+7(z-x)                                                                                                            12)25-4x2-4xy-y2                                   

6)x2+8x+15                                                                                                                   13)x2-4xy+4y2-x2+4zt-4t2                                

7)(x-4)2-36                                                                                                                   14)x2-xy-8x+8y                                 

5
23 tháng 8 2016

em chiu a. chang hieu gi hihi

24 tháng 8 2016

1)(5-x2).(x4+5x2+25)

2)15.(x-1)-(3x-1)

3)(x2-2)2

4)36x2.(y-1)

5)(7-y).(z-x)

6)(x+3).(x+5)

7)(x-10).(x+2)

8)(x+5).(3y+1)

9)(-(y-x-3)).(y-x+3)

10)(11-x).(y+x)

11)(y-x+3)).(y+x-3)

12)(-(y+2x-5)).(y+2x+5)

13)4.(tz+y2+(-x).y-t2

14)(8-x).(y-x)

28 tháng 1 2021

a, \(4\left(18-5x\right)-12\left(3x-7\right)=15\left(2x-16\right)-6\left(x+14\right)\)

\(\Leftrightarrow72-20x-36x+84=30x-240-6x-84\)

\(\Leftrightarrow156-56x=24x-324\)

\(\Leftrightarrow-80x+480=0\Leftrightarrow x=-6\)

b, \(5\left(3x+5\right)-4\left(2x-3\right)=5x+3\left(2x-12\right)+1\)

\(\Leftrightarrow15x+25-8x+12=5x+6x-36+1\)

\(\Leftrightarrow7x+37=11x-35\)

\(\Leftrightarrow-4x+72=0\Leftrightarrow x=18\)

28 tháng 1 2021

c, \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)

\(\Leftrightarrow10x-16-12x+15=12x-16+11\)

\(\Leftrightarrow-2x-1=12x-5\)

\(\Leftrightarrow-14x+4=0\Leftrightarrow x=\frac{2}{7}\)

d, \(5x-3\left\{4x-2\left[4x-3\left(5x-2\right)\right]\right\}=182\)

\(\Leftrightarrow5x-3\left[4x-15x+6\right]=182\)

\(\Leftrightarrow5x-3\left(-11x+6\right)=182\)

\(\Leftrightarrow5x+33x-18-182=0\)

\(\Leftrightarrow38x-200=0\Leftrightarrow x=\frac{100}{19}\)

23 tháng 7 2016

Tách : \(a-b=-\left(c-a\right)-\left(b-c\right)\)

Ta có : \(a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\)

\(=a^2b^2\left[-\left(c-a\right)-\left(b-c\right)\right]+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\)

\(=-a^2b^2\left(c-a\right)+c^2a^2\left(c-a\right)-a^2b^2\left(b-c\right)+b^2c^2\left(b-c\right)\)

\(=a^2\left(c-a\right)\left(c^2-b^2\right)+b^2\left(b-c\right)\left(c^2-a^2\right)\)

\(=a^2\left(c-a\right)\left(c-b\right)\left(c+b\right)+b^2\left(b-c\right)\left(c-a\right)\left(c+a\right)\)

\(=\left(c-a\right)\left(b-c\right)\left(b^2c+b^2a-a^2c-a^2b\right)\)

\(=\left(c-a\right)\left(b-c\right)\left[-\left(a-b\right)\left(ab+bc+ac\right)\right]\)

\(=-\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(ab+bc+ac\right)\)

22 tháng 7 2016

a2b2(a-b)+ b2c2(b-c)+ c2a2(c-a)= a3b2-a2b3+b3c2-b2c3+c2a2(c-a)=b3(c2-a2)-b2(c3-a3)+c2a2(c-a)

23 tháng 7 2016

A B C A' B' C' M

Ta có ; \(\frac{MA'}{AA'}=\frac{S_{BMC}}{S_{ABC}}\) ; \(\frac{MB'}{BB'}=\frac{S_{AMC}}{S_{ABC}}\) ; \(\frac{MC'}{CC'}=\frac{S_{ABM}}{S_{ABC}}\)

\(\Rightarrow\frac{MA'}{AA'}+\frac{MB'}{BB'}+\frac{MC'}{CC'}=\frac{S_{BMC}+S_{AMC}+S_{AMB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)

Áp dụng bất đằng thức Cauchy : \(\frac{MA'}{AA'}.\frac{MB'}{BB'}.\frac{MC'}{CC'}\le\left(\frac{MA'+MB'+MC'}{3}\right)^3=\left(\frac{1}{3}\right)^2\)

\(\Rightarrow\frac{MA'}{AA'}.\frac{MB'}{BB'}.\frac{MC'}{CC'}\le\frac{1}{27}\). Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}\frac{MA'}{AA'}=\frac{MB'}{BB'}=\frac{MC'}{CC'}\\\frac{MA'}{AA'}+\frac{MB'}{BB'}+\frac{MC'}{CC'}=1\end{cases}}\)\(\Rightarrow\frac{MA'}{AA'}=\frac{MB'}{BB'}=\frac{MC'}{CC'}=\frac{1}{3}\)

Vậy dấu "=" xảy ra khi M là trọng tâm của tam giác ABC.

21 tháng 7 2016

cam on

19 tháng 7 2016

Ta có : \(A=x^4-2x^3+3x^2+ax+b\)

Vì A là bình phương của một đa thức nên giả sử: \(A=\left(x^2+cx+d\right)^2\)\(\Leftrightarrow x^4+c^2x^2+d^2+2\left(cx^3+cdx+dx^2\right)=x^4-2x^3+3x^2+ax+b\)

\(\Leftrightarrow x^3\left(2c+2\right)+x^2\left(c^2+2d-3\right)+x\left(2cd-a\right)+\left(d^2-b\right)=0\)

Suy ra được : (2c+2) = 0 ; c2+2d-3 = 0 ; 2cd-a = 0 ; d2 - b = 0

\(\Rightarrow c=-1;d=1;a=-2;b=1\)

Vậy \(A=x^4-2x^3+3x^2-2x+1=\left(x^2-x+1\right)^2\)

19 tháng 7 2016

ta đặt A=(x2`+cx+d)2=x4 +2cx3+(2d+c2)x2+2cdx+d2

đồng nhất hệ số ta được2c=-2;2d+c2=3;2cd=a;b=d2

giải ra ta được a=-2; b=1

19 tháng 7 2016

A B C D O

Gọi O là giao điểm hai đường chéo AC và BD

  • Xét lần lượt các tam giác OAB , OBC , OCD , OAD và áp dụng bất đẳng thức tam giác được : 

\(OA+OB>AB\) ; \(OB+OC>BC\) ; \(OC+OD>CD\) ; \(OA+OD>AD\)

Cộng các bất đẳng thức trên theo vế được : \(2\left(OA+OB+OC+OD\right)>AB+BC+CD+AD\)

\(\Rightarrow2\left(AC+BD\right)>AB+BC+CD+AD\) \(\Rightarrow AC+BD>\frac{AB+BC+CD+DA}{2}\) (1)

  • Tương tự, lần lượt xét các tam giác ACD , BCD , BAC , ABD và áp dụng bất đẳng thức tam giác được : 

\(AD+CD>AC\) ; \(BC+CD>BD\) ; \(AB+BC>AC\) ; \(AB+AD>BD\)

Cộng các bất đẳng thức trên theo vế được : \(2\left(AC+BD\right)< 2\left(AB+BC+CD+DA\right)\)

\(\Rightarrow AC+BD< AB+BC+CD+DA\)(2)

Từ (1) và (2) ta có : \(\frac{AB+BC+CD+DA}{2}< AC+BD< AB+BC+CD+AD\)

hay \(\frac{AB+BC+CD+DA}{2}< OA+OB+OC+OD< AB+BC+CD+AD\)

19 tháng 7 2016

ve hin hra roi nghi cach cm 

17 tháng 7 2016

 <=> x^2 + y^2 + z^2 - xy - 3y - 2z + 4 <= 0 
<=> (x^2 - xy + 1/4y^2) + (3/4y^2 - 3y + 3) + (z^2 - 2z + 1) <= 0 
<=> (x^2 - xy + 1/4y^2) + 3(1/4y^2 - y + 1) + (z^2 - 2z + 1) <=0 
<=> (x-1/2y)^2 + 3(1/2y-1)^2 + (z-1)^2 <=0 

Nhận xét: 3 cái bình phương đều >=0 với mọi x,y,z nên VT>=0 với mọi x,y,z. Để bất phương trình đúng thì VT=0 <=> 3 cái đồng thời = 0 
<=> x = 1/2y và 1/2y = 1 và z = 1. 
Bạn giải 3 phương trình trên => x = 1, y = 2, z = 1.

17 tháng 7 2016

Quá dễ bằng 0