cho tam giác AOB , trên tia đối của OA,OB lấy theo thứ tự các điểm C và D sao cho OC=OD . Từ B kẻ BM vuông góc với AC,CN vuông góc với BD.Chứng minh:
a.tam giác COD là tam giác đều
b.AD=BC
c.tam giác MNP là tam giác đều
mong m.n giúp mik ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 A;.I won"t feel well enough to go to station to meet him
B;I will meet him for you,how I recognize him
A;He small and he wearing a black cap
2..A:This place is dirty.B;I'm sorry.I will bring you another
3.In a few minutes'time when the clock will strickes six,I'm waiting for you here
4.If you calling her at six,she probably practise playing the piano
5.If he work hard,he will pass the entrane exam to the university.
6.If you come at the seven ,I"m working in my garden
7.we will be pleased ìf your school win the match
8.Tomorow after noon at this time,I will flying to Carribean
9.
mình llười đọc quá nên ko làm hết đc ming bạn thông cảm nha
Đặt \(d=\left(a+b+2,2a+b+1\right)\).
\(\Rightarrow a^2=\left(a+b+2\right)\left(2a+b+1\right)⋮d^2\)
\(\Rightarrow a⋮d\).
\(\left(2a+b+1\right)-\left(a+b+2\right)=a-1⋮d\Rightarrow1⋮d\).
Do đó \(d=1\).
Suy ra \(a+b+2,2a+b+1\)đồng thời là các số chính phương.
Cho tam giác ABC đều. Vẽ ra phía ngoài tam giác ABC các tam giác đều ABD, ACE, BCF. Chứng minh:a) Ba điểm D, B, F thẳng hàng+ Ba điểm D, A, E thẳng hàng + Ba điểm E, C, F thẳng hàng b) AF= BE= CDc) Ba đường thẳng AF, BE, CD cùng đi qua một điểm.
Cho tam giác ABC đều. Vẽ ra phía ngoài tam giác ABC các tam giác đều ABD, ACE, BCF. Chứng minh:a) Ba điểm D, B, F thẳng hàng+ Ba điểm D, A, E thẳng hàng + Ba điểm E, C, F thẳng hàng b) AF= BE= CDc) Ba đường thẳng AF, BE, CD cùng đi qua một điểm.
Đánh số các người tham gia từ \(A_1\)đến \(A_{16}\).
Giả sử \(A_1\)thắng nhiều nhất.
Có: \(\frac{16\times15}{2}=120\)(ván đấu) suy ra \(A_1\)thắng \(\ge\frac{120}{16}=7,5\)
suy ra \(A_1\)thắng ít nhất \(8\)ván.
Không mất tính tổng quát, giả sử \(A_1\)thắng \(A_2,A_3,...,A_9\).
Giả sử trong những người này \(A_2\)thắng nhiều nhất.
\(A_2,...,A_9\)đánh \(\frac{8\times7}{2}=28\)(ván) suy ra \(A_2\)thắng \(\ge\frac{28}{8}=3,5\)
suy ra \(A_2\)thắng ít nhất \(4\)ván (khi đấu với \(A_3,...,A_9\))
Giả sử \(A_2\)thắng \(A_3,...,A_6\).
Giả sử \(A_3\)thắng nhiều nhất trong những người này.
\(A_3,...,A_6\)đánh \(\frac{4\times3}{2}=6\)(ván) suy ra \(A_3\)thắng \(\ge\frac{6}{4}=1,5\)
suy ra \(A_3\)thắng ít nhất \(2\)ván.
Giả sử \(A_3\)thắng \(A_4,A_5\).
Khi đó giả sử \(A_4\)thắng \(A_5\)thì ta có dãy thỏa mãn là: \(A_1,A_2,A_3,A_4,A_5\).
Ta có đpcm.
Đặt \(x=\frac{a}{b},y=\frac{c}{d}\)với \(a,b,c,d\inℤ^+;b,d\ne0;\left(a,b\right)=1;\left(c,d\right)=1\).
Ta có: \(x+\frac{1}{y}=\frac{a}{b}+\frac{d}{c}=\frac{ac+bd}{bc}\inℤ\)
\(\Rightarrow\hept{\begin{cases}ac+bd⋮b\\ac+bd⋮c\end{cases}}\Leftrightarrow\hept{\begin{cases}c⋮b\\b⋮c\end{cases}}\Leftrightarrow b=c\)(vì \(\left(a,b\right)=1,\left(c,d\right)=1\))
Tương tự ta cũng có \(a=d\).
Khi đó \(x=\frac{a}{b}=\frac{d}{c}=\frac{1}{y}\).
Bài toán ban đầu trở thành: tìm số hữu tỉ \(x>0\)để \(2x\inℤ,\frac{2}{x}\inℤ\).
\(2x\inℤ^+\Leftrightarrow x=\frac{a}{2}\)với \(a\inℤ^+\)
\(\frac{2}{x}=\frac{2}{\frac{a}{2}}=\frac{4}{a}\inℤ^+\)mà \(a\inℤ^+\)nên \(a\inƯ\left(4\right)=\left\{1;2;4\right\}\).
Từ đây bạn tìm ra được giá trị của \(x\)và \(y\).
Xét với \(k=100\)ta có tập \(\left\{101,102,...,200\right\}\). Dễ thấy không có hai số nào mà số này là bội của số kia.
Xét với \(k=101\):
Ta lấy ngẫu nhiên \(101\)số tự nhiên từ \(200\)số đã cho \(\left\{a_1,a_2,...,a_{101}\right\}\).
Ta biểu diễn \(101\)số này dưới dạng:
\(a_1=2^{x_1}m_1,a_2=2^{x_2}m_2,...,a_{101}=2^{x_{101}}m_{101}\)(với \(m_1,...,m_{101}\)là các số lẻ, \(x_1,...,x_{101}\)là các số tự nhiên)
Vì từ \(1\)đến \(200\)có \(100\)số tự nhiên lẻ nên trong \(101\)số đã lấy chắc chắn có ít nhất hai số khi biểu diễn dưới dạng trên có cùng giá trị \(m_i\). Khi đó hai số đó là bội của nhau.
Vậy \(k=101\)là giá trị nhỏ nhất cần tìm.
a)Ta có: BC2=52=25 (1)
AB2+AC2=32+42=25 (2)
Từ (1);(2)=>BC2=AB2+AC2(=25)
=>tam giác ABC vuông tại A (PyTaGo đảo)
b)Xét tam giác ABD vuông ở A và tam giác EBD vuông ở E(vì DE _|_ BC) có:
BD:cạnh chung
^ABD=^EBD (vì BD là phân giác của ^ABE)
=>tam giác ABD=tam giác EBD(ch-gn)
=>DA=DE (cặp cạnh t.ứ)
b)Xét tam giác ADF có: DF>DA (cạnh huyền>cạnh góc vuông)
Mà DA=DE(cmt)
=>DF>DE
Xét tam giác ADF vuông ở A và tam giác EDC vuông ở E có:
DA=DE(cmt)
^ADF=^EDC (2 góc đối đỉnh)
=>tam giác ADF=tam giác EDC (cgv-gnk)
=>DF=DC (cặp cạnh t.ứ)
DF ko bằng DE bn nhé!
\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\Rightarrow\left(a+b\right)\left(d+a\right)=\left(b+c\right)\left(c+d\right)\)
<=> ad + a2 + bd + ab = bc + bd + c2 + cd
<=> ad + a2 + bd + ab - bc - bd - c2 - cd = 0
<=> ad + a2 + ab - bc - c2 - cd = 0
<=> ( ad - cd ) + ( a2 - c2 ) + ( ab - bc ) = 0
<=> d( a - c ) + ( a - c )( a + c ) + b( a - c ) = 0
<=> ( a - c )( a + b + c + d ) = 0
<=> \(\orbr{\begin{cases}a-c=0\\a+b+c+d=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=c\\a+b+c+d=0\end{cases}\left(đpcm\right)}\)
\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{a+b+c+d}\)
TH1: \(a+b+c+d=0\Rightarrowđpcm\)
TH2: \(a+b+c+d\ne0\Rightarrow\frac{a+b}{b+c}=\frac{c+d}{d+a}=1\)
\(\Rightarrow a+b=b+c\)
\(\Rightarrow a=c\left(đpcm\right)\)