Cho một góc xoy và một điểm C thây đổi luôn nằm trong góc ấy.Kẻ
CM vuông góc với Ox và CN vuông góc với Oy.Biết:\(CM+CN=l\)trong đó \(l\) là một đọ dài cho trước.Vậy điểm C phải di chuyển trên đường nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
ƯCLN(2013;2014) là 1
vì ƯCLN(2013;2014) là 1 nên để con kiến đi hết tất cả các ô vuông mà mỗi ô chỉ đi qua đường chéo một lần thì con kiến phải đi hết đường chéo của mỗi ô vuông có cạnh 1cm trong 1 hàng ô vuông kề nhau có dạng hình chữ nhật( vì con kiến xuất phát từ A nên nếu con kiến đi theo đường chéo hướng về phía B thì hình chữ nhật có chiều rộng 1cm đó sẽ có chiều dài là 2013 )
nếu con kiến đi hết số đường chéo của mỗi ô vuông trong hình chữ nhật có chiều rộng 1cm và chiều dài 2013 cm đã nêu ở đề bài thì con kiến phải đi theo hình ziczac nối tiếp
con kiến xuất phát từ A nên trong ô thứ nhất đường chéo mà con kiến đi có dạng "/" tiếp đến ô thứ 2 thì con kiến đi theo đường chéo có dạng :"\"
cứ tiếp tục như vậy đến ô cuối cùng con kiến sẽ ở ô thứ 2013 và đi trên đường cheo có dạng như ô thứ nhất( từ A đến B) ( vì ở đây có 2 dạng đường chéo và có 2 loại ô số là ô số chẵn và ô số lẻ mà ô thứ nhất có đường chéo dang "/" => ô thứ 2013 có dạng đường chéo mà con kiến đi qua cũng là "/"
vì đường chéo ở ô 2013(chiều từ A đến C) ở hàng thứ 1(chiều tứ A đếnD) có dạng "/" mà trong ô vuông C
đó thì đường chéo mà con kiến đi qua không đi qua điểm C nên con kiến ko đi qua điểm C
ta có đường chéo ở ô thứ nhất ( từ C về A) ở hàng thứ 2( từ A đến D) có dạng :"\"
tương tự như hàng thứ nhất ( từ A đến D) ở cách chứng minh trên thì ở hàng thứ 2( từ A về D) cũng có đường chéo ở ô thứ 1 giống đường chéo ở ô thứ 2013 và là:"\"
ở chiều dọc (tức chiều từ A đến D) có 2014 ô nên cácx đường chéo ở ô thứ 2 giống các đường chéo ở ô thứ 2014 và có dạng( từ D đến C): \/\/\/\/..../\/\
vì ở đường chéo đầu ở ô thứ 2( chiều từ A đến D) và ở ô thứ nhất ( chiều từ A đến C) có dạng "\" nên => trong hàng thứ 2014 ( chiều từ A đến D) ô thứ 1 thì đường đi của con kiến trong ô vuông có dạng "\" mà điểm D nằm ở đỉnh phía trên cùng bên trái của ô vuông nên => con kiến đi qua điểm D
vì ở ô thứ 2013(chiêu từ D đến C) ở hàng thứ 2014 (chiều từ A đến D) có đường chéo có dạng giống như đường chéo ở ô thứ 1 là"\" mà điểm C nằm ở đỉnh trên cùng phía bên phải mà đường chéo con kiến đi qua có dạng "\" 2 đầu đường chéo lân lượt nằm ở dỉnh dưới cùng phía bên phải và đỉnh trên cùng phía bên trái => đường chéo mà con kiến đi qua không đi qua điểm C
vậysau khi đi qua tất cả các ô vuông mà mỗi ô đi qua 1 đường chéo thì trong 3 điểm B;C;D thì con kiến đi qua điểm D
giải phương trình
a,(11⋅2+12⋅3+13⋅4+19⋅1011⋅2+12⋅3+13⋅4+19⋅10)(x-1)+110x110x=x−910x−910
b,x+11+2x+33+3x+55+20x+3939=22+43+65+4039x+11+2x+33+3x+55+20x+3939=22+43+65+4039
c,(x-10)+(x-19)+(x-18)+...+100+101=101
d,(11⋅51+12⋅52+13⋅53+...+110⋅6011⋅51+12⋅52+13⋅53+...+110⋅60)x=11⋅11+11⋅12+11⋅13
TH1: M nằm giữa A và B
A B C D E F H M K P Q R N
kẻ MQ_|_ DC tại Q
FN_|_DC tại N
EH_|_DC tại H
ta có E là trung điểm của BD; F là trung điểm của AC
=> EF là đuờng trung bình ứng với cạnh DC
=> EF//DC
ta có MQ_|_DC tại Q mà EF//DC
=> MQ_|_EF tại R
ta có: EH_|_DC
FN_|_DC
MQ_|_DC
MK_|_DC
=> EH//FN//MQ//MK
ta có góc MFE= góc FKD(MK chung và EF//NK)
xét 2 tam giác vuông MFR và FKN có:
FM=FK(gt)
góc MFE= góc FKD(cmt)
=> tam giác FMR=tam giác FKN(CH-GN)
=> RF=NK(1)
ta có góc MEF=góc EHC( do MH chung và EF//DC)
xét 2 tam giác vuông MER và EHP có:
góc MEF= góc EHC(cmt)
ME=EH(gt)
=> tam giác MER= tamgiác EHP(CH-GN)
=> ER=HP(2)
ta có: EF//PN
EH//FN
=> EF=HN(3)
từ (1)(2)(3) =>
EF=HN
RF=NK
ER=HP
ta có : HK=HP+PN+NK=ER+RF+EF=EF+EF
=>HK=2EF
TH2:M trùng A=> AC trùng MK=> C trùng K
M trùng A nên ME cũng trùng MH
A B C D E F H K M P
kẻ FP//EH ( P thuộc DC)
xét tam giác EAB và tam giác EHD có':
góc AEB= góc DEH(2 góc đối đỉnh)
ED=EB(gt)
góc BAE= góc EHD( AB//CD)
=> tam giác EAB= tam giác EHD(g.c.g)
=> AE=EH=1/2AH
ta có: E là trung điểm của AH; F là trung điểm của AC
=> EF là đường trung bình của tam giác AHC
=> EF//DC
EH//FP
=>tứ giác EFPH là hình bình hành
=> EH=FP
xét tam giác AEF và tam giác FCPcó:
AF=FC(gt)
góc AFE= góc FCP(EF//DC)
EH=FP(cmt)
=> tam giác AEF= tam giác FCP(c.g.c)
=>EF=PC
mà EF=HP( do tứ giác EFPH là hình bình hành)
=> EF=HP=PK
ta có: HK=HP+PK=EF+EF=2EF
TH3:M trùng B=>BD trùng MH và BF trùng MK
A B C D E F M K H P
kẻ EP // FK
xét tam giác FBA và tam giác FKC có:
FA=FC(gt)
góc AFB= góc KFC( 2 góc đối đỉnh)
góc BAF= góc KCF( AB//CD)
=> tam giác FBA= tam giác FKC(g.c.g)
=> FB=FK
ta có E là trung điểm của BD ; F là trung điểm của BK
=> EF là đường trung bình của tam giác BDK
=> EF//PK
mà EP//FK
=> EF=PK và EP=FK
ta có: EF//DP
BF//EP
=> góc EBF= góc DEP
xét tam giác BEF và tam giác EDP có:
ED=EB(gt)
góc BEF= góc EDP(EF//DC)
góc DEP= góc EBF(cmt)
=> tam giác BEF= tam giác EDP(g.c.g)
=> DP=EF và bằng PK
ta có: HK=(hay DP)HP+PK=EF+EF
=> HK=2EF
từ 3 trường hợp nêu trên => nếu M nằm giữa AB, M trùng A hoặc M trùng B thì độ dài của HK vẫn không đổi và luôn bằng 2EF
vậy độ dài của HK không đổi và luôn bằng 2EF khi M di động trên AB
vì HK luôn bằng 2EF nên độ dài k đổi khi M di động trên AB
x O y M N B A N' M'
Gọi M' , N' lần lượt là các điểm đối xứng của M và N qua Ox và Oy , suy ra M', N' cố định
Khi đó ta có : AM = AM' , BN = BN'
=> AM + AB + BN = AM' + AB + BN ' \(\ge\)M'N' (hằng số)
Vậy AM + AB + BN đạt giá trị nhỏ nhất bằng M'N' khi A,B lần lượt là giao điểm của M'N' với Ox và Oy
Vì a+b=c+d;\(a^2+b^2=c^2+d^2\)nên:\(a^{2013}+b^{2013}=\left(a+b\right)^{2013}\)và \(c^{2013}+d^{2013}=\left(c+d\right)^{2013}\)vậy
\(\left(a+b\right)^{2013}=\left(c+d\right)^{2013}\).Đến đây ta thấy a+b=c+d nên chắc chắn \(a^{2013}+b^{2013}=c^{2013}+d^{2013}\)
ai có thể giải thích cho mk hiểu tại sao a2013+b2013=(a+b)2013 đc ko
Đặt đa thức là M
\(\Rightarrow M=n^2\left(n^6-n^4-n^2+1\right)\)
\(\Rightarrow M=n^2\left[n^4\left(n^2-1\right)-\left(n^2-1\right)\right]\)
\(\Rightarrow M=n^2\left(n^2-1\right)\left(n^4-1\right)\)
\(\Rightarrow M=n\left(n-1\right)\left(n+1\right)n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\left(n-1\right)\left(n+1\right)\)
Ta có
n(n - 1)(n+1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 3
\(\Rightarrow\left[n\left(n-1\right)\left(n+1\right)\right]\left[n\left(n-1\right)\left(n+1\right)\right]\) chia hết cho 9
=> M chia hết cho 9
Mặt khác
Vì n là số lẻ nên n - 1 và n+1 là số chẵn
=> (n - 1)(n+1) chia hết cho 8
\(n\left(n-1\right)\left(n+1\right)n\left(n-1\right)\left(n+1\right)\left(n+1\right)\left(n-1\right)\) chia hết cho 128
=> M chia hết cho 128
Mà (9;128)=1
=> M chia hết cho 9x128=1152 ( đpcm )
Bài 1:
Theo đầu bài ta có:
\(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)
Từ đó suy ra:
\(H=a\cdot\left(a+b\right)\cdot\left(a+c\right)\)
\(=a\cdot-c\cdot-b\)
\(=a\cdot b\cdot c\)
\(K=c\cdot\left(c+a\right)\cdot\left(c+b\right)\)
\(=c\cdot-b\cdot-a\)
\(=a\cdot b\cdot c\)
Vậy H = K ( đpcm )
Này bạn, tớ thấy bài 1 đề phải là a + b + c = 0 chứ. Sao lại a + b + b = 0 được
d) 2 tam giác MCN và ACN có cùng chiều cao hạ từ C đến AN nên: \(\frac{S_{MCN}}{S_{ACN}}=\frac{MN}{AN}\) (1)
2 tam giác BMN và ABN có cùng chiều cao hạ từ B đến AN nên: \(\frac{S_{BMN}}{S_{ABN}}=\frac{MN}{AN}\) (2)
Từ (1) và (2) ta suy ra \(\frac{MN}{AN}=\frac{S_{MCN}}{S_{ACN}}=\frac{S_{BMN}}{S_{ABN}}=\frac{S_{MCN}+S_{BMN}}{S_{ACN}+S_{ABN}}=\frac{S_{MBC}}{S_{ABC}}\)\(\Rightarrow\)\(\frac{MN}{AN}=\frac{S_{MBC}}{S_{ABC}}\)
Chứng minh tương tự ta có \(\frac{MP}{BP}=\frac{S_{AMC}}{S_{ABC}}\)và \(\frac{MQ}{CQ}=\frac{S_{ABM}}{S_{ABC}}\)
Do đó \(\frac{MN}{AN}+\frac{MP}{BP}+\frac{MQ}{CQ}=\frac{S_{MBC}+S_{AMC}+S_{ABM}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)(đpcm).
a) Tg OBD và Tg ECO có
g OBD = g ECO (tg ABC cân tại A) (1)
g BOD = g OEC (gt) (2)
(1) và (2) => Tg OBD đồng dạng Tg ECO
=>OB/EC = BD/CO => OB*CO = EC*BD.
Mà OB = CO => OBbình = EC*BD
b) Ta có: gDOE = 180 độ - (gBOD + gEOC)
= 180 độ - (gOEC + gCOE)
= 180 độ - (180 độ - gOCE)
= gOCE = gBCA = const (3)
c) Theo câu a: Tg OBD đồng dạng Tg ECO => OD/EO = BD/CO => OD/ EO = BD/BO =>
=> OD*BO = EO*BD => EO/OB = OD/BD (4)
Mặt khác: từ(3) =>gDOE = gOBD (5)
từ (4) và (5) => TgEOD đồng dạng TgOBD
đường phân giác của \(\widehat{xOy}\)