K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2016

?o?n th?ng f: ?o?n th?ng [A, D] ?o?n th?ng h: ?o?n th?ng [B, C] ?o?n th?ng i: ?o?n th?ng [C, D] ?o?n th?ng j: ?o?n th?ng [B, A] ?o?n th?ng k: ?o?n th?ng [P, N] ?o?n th?ng m: ?o?n th?ng [P, M] ?o?n th?ng n: ?o?n th?ng [M, Q] ?o?n th?ng p: ?o?n th?ng [N, Q] ?o?n th?ng q: ?o?n th?ng [C', B] ?o?n th?ng r: ?o?n th?ng [D, A'] ?o?n th?ng s: ?o?n th?ng [C', D] ?o?n th?ng t: ?o?n th?ng [B, A'] A = (-1.44, -1.78) A = (-1.44, -1.78) A = (-1.44, -1.78) D = (4.76, -1.82) D = (4.76, -1.82) D = (4.76, -1.82) ?i?m B: ?i?m tr�n g ?i?m B: ?i?m tr�n g ?i?m B: ?i?m tr�n g ?i?m C: ?i?m tr�n g ?i?m C: ?i?m tr�n g ?i?m C: ?i?m tr�n g ?i?m M: Trung ?i?m c?a j ?i?m M: Trung ?i?m c?a j ?i?m M: Trung ?i?m c?a j ?i?m N: Trung ?i?m c?a i ?i?m N: Trung ?i?m c?a i ?i?m N: Trung ?i?m c?a i ?i?m P: ?i?m tr�n h ?i?m P: ?i?m tr�n h ?i?m P: ?i?m tr�n h ?i?m Q: Giao ?i?m c?a l, f ?i?m Q: Giao ?i?m c?a l, f ?i?m Q: Giao ?i?m c?a l, f ?i?m C': C ??i x?ng qua P ?i?m C': C ??i x?ng qua P ?i?m C': C ??i x?ng qua P ?i?m A': A ??i x?ng qua Q ?i?m A': A ??i x?ng qua Q ?i?m A': A ??i x?ng qua Q

Lấy C' thuộc BC sao cho P là trung điểm CC'. Tương tự lấy A' trên AD sao cho Q là trung điểm AA'.

Xét tam giác CC'D có PN là đường trung bình nên PN song song và bằng một nửa C'D (1).

Tương tự xét tam giác ABA' có MQ là đường trung bình nên MQ song song và bằng một nửa BA' (2).

Mà giả thiết lai jcho MNPQ là hình bình hành nên PN // MQ và PN = MQ (3).

Từ (1), (2), (3) ta suy ra C'D // BA' và C'D = BA'.

Vậy thì tứ giác C'BAD là hình bình hành hay C'B // DA', hay BC // AD.

30 tháng 8 2016

Bằng nhau

30 tháng 8 2016

a=b=c=1 suy ra Tam giác ABC là tam giác đều vì có độ dài 3 canh = nhau .

HD
31 tháng 8 2016

Em tham khảo nhé

31 tháng 10 2018

Tham khảo

30 tháng 8 2016

còn bài cuối chỉ cần bạn đặt \(n^{1994}+n^{1993}=\left(n+1\right)n^{1993}\)

mà số nguyên tố nếu mình nhớ không nhầm thì thường được biểu diễn dưới dạng là 4k+1 thì phải hay còn dạng nữa mình không nhớ lắm hay là 3k+1 gì đó nữa 

30 tháng 8 2016

lâu nay lười giải quá nhưng thôi mình giải cho bạn.

câu 1: ta gọi 2 số đó là a và b. Ta có:

\(a=x^2+y^2\)

\(b=n^2+m^2\)

=> \(ab=\left(x^2+y^2\right)\left(n^2+m^2\right)\)

bạn nhân nó ra sau đó cộng thêm 2nmxy và trừ 2nmxy rồi áp dụng hằng đẳng thức 1 và 2

1 tháng 9 2016

T hỏi cô tớ và cô t nghĩ 1 hồi và giải thế này : 14079922_192255091194315_8804052824233181578_n.jpg?oh=6b16afc72120a9a0bcefac75320c8f09&oe=583C42EB

14222191_192255094527648_4594141774953970270_n.jpg?oh=e20bc67c57584c3669c3b0c28c11e849&oe=584C8FF8

26 tháng 11 2018

Đùa NGƯỜI ÀAAAAA

26 tháng 8 2016

Đặt \(\sqrt{x^2-x+1}=a\left(ĐK:a>0\right)\)

\(pt\Leftrightarrow\frac{\left(x^6+3x^4a\right)\left(4-a^2\right)}{4\left(2+a\right)a^2}=a\left(2-a\right)\)

\(\Leftrightarrow\left(x^6+3x^4a\right)\left(4-a^2\right)=4a^3\left(4-a^2\right)\)

\(\Leftrightarrow\left(4-a^2\right)\left(x^6+3x^4a-4a^3\right)=0\)

TH1: \(4-a^2=0\Leftrightarrow\orbr{\begin{cases}a=-2\left(l\right)\\a=2\left(n\right)\end{cases}}\)

Với a = 2 , \(\sqrt{x^2-x+1}=2\Rightarrow x^2-x-3=0\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{13}+1}{2}\\x=\frac{-\sqrt{13}+1}{2}\end{cases}}\)

TH2: \(x^6+3x^4a-4a^3=0\Rightarrow x^6-x^4a+4x^4a-4x^2a^2+4x^2a^2-4a^3=0\)

\(\Leftrightarrow\left(x^2-a\right)\left(x^4+4x^2a+4a^2\right)=0\Leftrightarrow\left(x^2-a\right)\left(x^2+2a\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=a\\x^2=-2a\left(l\right)\end{cases}}\)

Với \(x^2=a\Rightarrow x^2=\sqrt{x^2-x+1}\)

Đến đây bình phương và tìm ra nghiệm.

26 tháng 8 2016

Khó ghê, có quản lí mới giải được

26 tháng 8 2016

ĐK: \(\hept{\begin{cases}x^3+2x+4\ge0\\x^3-2x+4\ge0\end{cases}}\)

Đặt: \(\hept{\begin{cases}a=\sqrt{x^3+2x+4}\left(a\ge0\right)\\b=\sqrt{x^3-2x+4}\left(b\ge0\right)\end{cases}\Rightarrow\hept{\begin{cases}a^2=x^3+2x+4\\b^2=x^3-2x+4\end{cases}}\Rightarrow a^2-b^2=4x\Rightarrow x=\frac{a^2-b^2}{4}}\) 

\(pt\Leftrightarrow\left[1+\left(\frac{a^2-b^2}{4}\right)\right]a+\left[1-\left(\frac{a^2-b^2}{4}\right)\right]b=4\) 

\(\Leftrightarrow\left(4+a^2-b^2\right)a+\left(4-a^2+b^2\right)b=16\)

\(\Leftrightarrow a^3+b^3-ab^2-a^2b+4\left(a+b\right)=16\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)+4\left(a+b\right)=16\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-2ab+b^2\right)+4\left(a+b\right)=16\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2+4\left(a+b\right)=16\) (1)

Từ pt, ta có: \(\left(1+x\right)a-\left(1-x\right)b=4\)

\(\Leftrightarrow a+b+\left(a-b\right)x=4\) (2)

Thay (1) và (2) vào, ta có:

\(\left(a+b\right)\left(a-b\right)^2+4\left(a+b\right)=4\left[a+b+\left(a-b\right)x\right]\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2=4\left(a-b\right)x\)

\(\Leftrightarrow\left(a-b\right)\left[\left(a+b\right)\left(a-b\right)-4x\right]=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2-4x\right)=0\Leftrightarrow\orbr{\begin{cases}a=b\\a^2-b^2=4x\end{cases}}\)

Với \(a=b\) , ta có: \(\sqrt{x^3+2x+4}=\sqrt{x^3-2x+4}\Leftrightarrow x=0\left(TM\right)\)

Với \(a^2-b^2=4x\) , ta có: \(x^3+2x+4-\left(x^3-2x+4\right)=4x\)

\(\Leftrightarrow4x=0\)

\(\Rightarrow x=0\)

Vậy:.........


 

26 tháng 8 2016

Lớp mấy đây, lớp 8 mà đây á

25 tháng 8 2016

mấy bài này ns thiệt mk chả hỉu j...cg đơn giản thoy...vì mk ms học lp 6 mừ...hehe^^

26 tháng 8 2016

Cho mình sửa lại  từ D hạ đường vuông góc với BD 

26 tháng 8 2016

?o?n th?ng f: ?o?n th?ng [B, C] ?o?n th?ng h: ?o?n th?ng [A, B] ?o?n th?ng i: ?o?n th?ng [A, C] ?o?n th?ng m: ?o?n th?ng [B, D] ?o?n th?ng n: ?o?n th?ng [F, E] ?o?n th?ng p: ?o?n th?ng [C, E] ?o?n th?ng q: ?o?n th?ng [D, M] B = (-1.62, 1) B = (-1.62, 1) B = (-1.62, 1) C = (3.92, 1.06) C = (3.92, 1.06) C = (3.92, 1.06) ?i?m A: ?i?m tr�n g ?i?m A: ?i?m tr�n g ?i?m A: ?i?m tr�n g ?i?m D: Giao ?i?m c?a j, i ?i?m D: Giao ?i?m c?a j, i ?i?m D: Giao ?i?m c?a j, i ?i?m E: Giao ?i?m c?a k, l ?i?m E: Giao ?i?m c?a k, l ?i?m E: Giao ?i?m c?a k, l ?i?m F: Giao ?i?m c?a k, h ?i?m F: Giao ?i?m c?a k, h ?i?m F: Giao ?i?m c?a k, h ?i?m M: Trung ?i?m c?a B, E ?i?m M: Trung ?i?m c?a B, E ?i?m M: Trung ?i?m c?a B, E

Gọi F là giao điểm của ED và AB.

Xét tam giác BEF có BD là đường cao đồng thời phân giác nên nó là tam giác cân. Vậy thì D là trung điểm EF.

Từ đí suy ra ID // AB hay \(\widehat{DIC}=\widehat{ABC}\). Mà \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{DIC}=\widehat{ACB}\)

Vậy tam giác DIC cân tại D hay DI = DC.

Xét tam giác vuông BED có DI là trung tuyến ứng với cạnh huyền nên BE = 2 ID = 2 DC (đpcm).