Tính giá trị của biểu thức
\(\sqrt{2000.2001.2002.2003.2004.2005.2006+36}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trong đề thi HSG tỉnh thanh hóa năm 2010-2011(đánh lên mạng đi,hình như là bài 5)
Đặt \(f\left(\sqrt{2}+\sqrt{7}\right)=a,g\left(\sqrt{2}+\sqrt{7}\right)=b\)
Theo định lý Bezout=>\(f\left(x\right)=\left(x-\sqrt{2}-\sqrt{7}\right).h\left(x\right)+a\)(1)
\(g\left(x\right)=\left(x-\sqrt{2}-\sqrt{7}\right).k\left(x\right)+b\)(2)
Theo bài ra: \(\frac{a}{b}=\sqrt{2}=>a=\sqrt{2}b\)
Từ (2)=>\(b=g\left(x\right)-\left(x-\sqrt{2}-\sqrt{7}\right)k\left(x\right)\)
Thay vào (1) ta được: \(f\left(x\right)=\left(x-\sqrt{2}-\sqrt{7}\right).h\left(x\right)+\sqrt{2}.\left[g\left(x\right)-\left(x-\sqrt{2}-\sqrt{7}\right)k\left(x\right)\right]\)
=>\(f\left(x\right)=\left(x-\sqrt{2}-\sqrt{7}\right).\left[h\left(x\right)-\sqrt{2}k\left(x\right)\right]+\sqrt{2}.g\left(x\right)\)
Xét x=1=> \(f\left(1\right)=\left(1-\sqrt{2}-\sqrt{7}\right).\left[h\left(1\right)-\sqrt{2}k\left(1\right)\right]+\sqrt{2}.g\left(1\right)\)
Vì f(1) là số nguyên, \(\left(1-\sqrt{2}-\sqrt{7}\right).\left[h\left(1\right)-\sqrt{2}k\left(1\right)\right]\)và \(\sqrt{2}g\left(x\right)\)là số hữu tỉ
=>Vô lí
Vậy ko có đa thức f(x) và g(x) thoả mãn phương trình
ahihi cái này chị ra rồi nhé , ohân tích đa thức thành nhân tử tìm quan hệ nhé, tối rồi lười viết lắm
Dễ dàng thấy được a, b phải cùng tính chẵn lẻ.
Ta đặt \(\hept{\begin{cases}a^5+b=2^x\left(1\right)\\b^5+a=2^y\left(2\right)\end{cases}}\) với \(\hept{\begin{cases}x,y\in N;x,y>0\\x+y=c\end{cases}}\)
Không mất tính tổng quát ta giả sử: \(a\ge b\)
Lấy (1) - (2) ta được
\(a^5+b-b^5-a=2^x-2^y\)
\(\Leftrightarrow\left(a-b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4-1\right)=2^y\left(2^{x-y}-1\right)\)
Ta thấy rằng \(\hept{\begin{cases}a-b:chan\\a^4+a^3b+a^2b^2+ab^3+b^4-1:le\end{cases}}\)
Ta xét 2 TH:
TH 1: \(a=b\)
\(\Rightarrow a^5+a=2^x\)
Với \(a=1\)\(\Rightarrow x=1\)(nhận)
Với \(a>1\)
\(\Rightarrow a\left(a^4+1\right)=2^x\) (loại vì \(a,\left(a^4+1\right)\)trong 2 số này sẽ có ít nhất 1 số lẻ)
TH 2: \(a\ne b\)
Ta có: \(\hept{\begin{cases}a-b:chan\\a^4+a^3b+a^2b^2+ab^3+b^4-1:le\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a-b=k.2^y\\a^4+a^3b+a^2b^2+ab^3+b^4-1=\frac{2^{x-y}-1}{k}\end{cases}}\)(với k là số nguyên dương)
Ta có: \(a-b=k.\left(b^5+a\right)>a+b>a-b\)(loại)
Vậy ta có 1 bộ nghiệm duy nhất là: \(\left(a,b,c\right)=\left(1,1,2\right)\)
cái đoạn a-b=k(b^5+a) em k hiểu cho lắm ạ,anh giảng lại dc k
\(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0.\)
\(\Leftrightarrow\sqrt[3]{m^2}=-\frac{b\sqrt[3]{m}+c}{a}\)
\(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0.\)
\(\Leftrightarrow a.m+b\sqrt[3]{m^2}+c\sqrt[3]{m}=0\)
\(\Leftrightarrow a.m+b.\left(-\frac{b\sqrt[3]{m}+c}{a}\right)+c\sqrt[3]{m}=0\)
\(\Leftrightarrow a^2m+b.\left(-b\sqrt[3]{m}-c\right)+ac\sqrt[3]{m}=0\)
\(\Leftrightarrow a^2m-b^2.\sqrt[3]{m}-bc+ac\sqrt[3]{m}=0\)
\(\Leftrightarrow a^2m-bc=\sqrt[3]{m}\left(b^2-ac\right)\)
\(\Leftrightarrow\frac{a^2m-bc}{\sqrt[3]{m}}=b^2-ac\)
Do \(\frac{a^2m-bc}{\sqrt[3]{m}}\in I\)và \(b^2-ac\in Q\)nên
\(\Rightarrow\hept{\begin{cases}\frac{a^2m-bc}{\sqrt[3]{m}}=0\\b^2-ac=0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2m-bc=0\\b^2-ac=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2m=bc\\b^2=ac\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}a^3m=abc\\b^3=abc\end{cases}\Rightarrow a^3m=b^3}\)
Với \(a,b\ne0\) \(\Rightarrow m=1\Rightarrow\sqrt[3]{m}=1\)là số hữu tỉ ( LOẠI )
Với \(a=b=0\Rightarrow c=0\left(TM\right)\)
Vậy a=b=c=0 thỏa mãn đề bài
Từ giả thiết \(1\le a\le2\),suy ra
\(\left(a-1\right)\left(a-2\right)\le0\)
\(\Leftrightarrow a^2-3a+2\le0\)
Tương tự \(b^2-3b+2\le0\)
\(\Rightarrow a^2+b^2-3\left(a+b\right)+4\le0\)
Do đó
\(P=a^2+b^2-3\left(a+b\right)+4-\left(a+\frac{1}{a}\right)-\left(\frac{b}{4}+\frac{1}{b}\right)\)
\(P=\left[a^2+b^2-3\left(a+b\right)+4\right]-\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)^2-\left(\frac{\sqrt{b}}{2}-\frac{1}{\sqrt{b}}\right)^2-3\le-3\)
Đẳng thức xảy ra khi\(\hept{\begin{cases}\sqrt{a}=\frac{1}{\sqrt{a}}\\\frac{\sqrt{b}}{2}=\frac{1}{\sqrt{b}}\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=2\end{cases}}\)
Vậy \(max_P=-3\Leftrightarrow a=1;b=2\)
P/ s : Các bạn tham khảo nha
Đề kiểu gì vậy.
Ta có: \(2p^2⋮p^2\)thì là hợp số luông chứ chứng minh cái gì nữa
ghép lại rồi dùng hđt thứ 3 thôi bạn
Bạn làm rõ ra được không.?