Gọi x, y là các số thực thay đổi , thỏa mãn điều kiện: x>y>0 và xy=4
Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{x^2+y^2}{x-y+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(\overrightarrow{1a}=\left(x;\frac{1}{x}\right);\overrightarrow{b}=\left(y;\frac{1}{y}\right);\overrightarrow{c}=\left(z;\frac{1}{z}\right)\)
Ta có:
\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}=\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|+\left|\overrightarrow{c}\right|\)
\(\ge\left|\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\right|=\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)\(\ge\sqrt{1^2+\frac{9^2}{\left(x+y+z\right)^2}}\)
\(=\sqrt{1+81}=\sqrt{82}\)
Áp dụng BDT MInkopki
VT\(\ge\)\(\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)\(\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}=\sqrt{82}\)
BDT minkopki
\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}+\sqrt{e^2+f^2}\ge\sqrt{\left(a+c+e\right)^2+\left(b+d+f\right)^2}\)
Vì chữ số tận cùng của \(a^2\)là 4 nên chữ số tận cùng của \(a\)là 2 hoặc 8.
Nếu chữ số tận cùng của \(a\)là 2 thì 2 số tận cùng của a có dạng \(\overline{x2}\)
\(\overline{x2}=10x+2\)
\(\Rightarrow\left(\overline{x2}\right)^2=\left(10x+2\right)^2=100x^2+40x+4\equiv40x+4\left(mod100\right)\equiv64\left(mod100\right)\)
Ta có:
\(40.1+4\le40x+4\le40.9+4\)
\(\Leftrightarrow44\le40x+4\le364\)
\(\Rightarrow\left(40x+4\right)=\left(64;164;264;364\right)\)
\(\Rightarrow x=\left(4;9\right)\)
Hai số tận cùng của a là: 42; 92.
Tương tự cho trường hợp còn lại.
\(M=2x+\sqrt{5-x^2}\)
\(\Leftrightarrow M-2x=\sqrt{5-x^2}\)
\(\Leftrightarrow M^2-4Mx+4x^2=5-x^2\)
\(\Leftrightarrow5x^2-4Mx+M^2-5=0\)
Để PT theo nghiệm x có nghiệm thì
\(\Delta'=4M^2-5.\left(M^2-5\right)\ge0\)
\(\Leftrightarrow M^2\le25\)
\(\Leftrightarrow-5\le M\le5\)
\(\Leftrightarrow x^2-1+2\sqrt{x}.\sqrt{x^2-1}-3x=0\)
đặt \(\sqrt{x^2-1}=a;\sqrt{x}=b\)
=>a2+2ab-3b2=0
đến đây dễ rồi
Điều kiện -1 =<x<0
Chia cả 2 vế cho x ta nhận được \(x+2\sqrt{x-\frac{1}{x}}=3+\frac{1}{x}\)
Đặt t=\(x-\frac{1}{x}\)ta giải được
Ta có:
\(a+b+c+ab+bc+ca=6\)
\(\Leftrightarrow12-\left(2a+2b+2c+2ab+2bc+2ca\right)=0\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+3-\left(2a+2b+2c+2ab+2bc+2ca\right)=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
\(\Rightarrow a=b=c=1\)
\(\Rightarrow Q=\frac{1^{22}+1^{12}+1^{1994}}{1^{22}+1^{12}+1^{2013}}=\frac{3}{3}=1\)
a) ĐK: \(0\le x\le\frac{\sqrt{5}+1}{2}\)
\(\sqrt{1-\sqrt{x^2-x}}=\sqrt{x}-1\)
\(\Leftrightarrow1-\sqrt{x^2-x}=\left(\sqrt{x}-1\right)^2\left(x\ge1\right)\)
\(\Leftrightarrow1-\sqrt{x^2-x}=x-2\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x\left(x-1\right)}=2\sqrt{x}-x\)
\(\Leftrightarrow\sqrt{x\left(x-1\right)}=\sqrt{x}\left(2-\sqrt{x}\right)\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x-1}+\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x-1}+\sqrt{x}-2=0\end{cases}}\)
TH1: x = 0 (Loại)
TH2: \(\sqrt{x-1}+\sqrt{x}-2=0\)
\(\Leftrightarrow\sqrt{x-1}=2-\sqrt{x}\)
\(\Leftrightarrow x-1=4-4\sqrt{x}+x\left(x\le4\right)\)
\(\Leftrightarrow4\sqrt{x}=5\Leftrightarrow\sqrt{x}=\frac{5}{4}\Leftrightarrow x=\frac{25}{16}\left(tm\right)\)
b) \(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
ĐK: \(x\ge1\)
\(pt\Leftrightarrow\sqrt{\left(x+1\right)\left(2x+6\right)}+\sqrt{\left(x+1\right)\left(x-1\right)}=2\left(x+1\right)\)
\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{2x+6}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{2x+6}+\sqrt{x-1}-2\sqrt{x+1}=0\end{cases}}\)
TH1: \(\sqrt{x+1}=0\Leftrightarrow x=-1\left(l\right)\)
TH2: \(\sqrt{2x+6}=2\sqrt{x+1}-\sqrt{x-1}\)
\(\Leftrightarrow2x+6=4\left(x+1\right)+\left(x-1\right)-4\sqrt{x^2-1}\)
\(\Leftrightarrow2x+6=5x+3-4\sqrt{x^2-1}\)
\(\Leftrightarrow4\sqrt{x^2-1}=3x-3\Leftrightarrow16\left(x^2-1\right)=9x^2-18x+9\left(x\ge1\right)\)
\(\Leftrightarrow7x^2+18x-25=0\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=-\frac{25}{7}\left(l\right)\end{cases}}\)
dk tu xd \(\sqrt{2x^2+8x+6}\) \(+\sqrt{x^2-1}=2x+2\)
\(\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}-\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\)
\(\Leftrightarrow\sqrt{x+1}\left(2\sqrt{x+3}-\sqrt{x-1}-2\sqrt{x+1}\right)=0\)
đến đây bn tự giải nhé
Mình dùng máy casio nhé bạn.
KQ; 0,6151214812.
Bạn có cần cách làm không?
\(P=\frac{\left(x-y\right)^2+2xy}{x-y+1}=\frac{t^2+8}{t+1}\) (với t = x - y > 0)
\(=\frac{t^2-4t+4}{t+1}+\frac{4\left(t+1\right)}{t+1}=\frac{\left(t-2\right)^2}{t+1}+4\ge4\)
Đẳng thức xảy ra khi t = 2 -> x = y + 2 thay vào giả thiết xy = 4 tính tiếp v.v....
True?